
Lecture 28: Discrete Math Review
Or Is It Discreet Math?
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Announcements
No homework parties this week! Our reservations
got cancelled :’(
Discussion sections will be OH / topic reviews
See weekly post for full details
HW Review is 4-6 in 320 Soda this week
Please fill out the course evaluation survey! There’s
a point of extra credit in it for you :)
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Rough Outline
Today: review of first half of class

▶ Propositional Logic
▶ Proofs
▶ Graphs
▶ Modular Arithmetic
▶ Cryptography
▶ Polynomials
▶ Error Correcting Codes
▶ Countability
▶ Computability
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Propositional Logic
Propositions are basic building blocks of logic
Allow simplification of complex statements

Examples?
▶ “Pizza is a legitimate breakfast food.”
▶ “Every integer is either even or odd.”
▶ “x + 3 = 7.”

Make formulae w/operators: ∧,∨,¬, =⇒ , etc
(P ∨ Q) =⇒ P
((¬P) ⇐⇒ Q) ∧ R
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Truth Tables
Formulae are really just functions!
Input: T/F values to propositions
Output: value of formula

P Q (¬P) ∨ (¬Q) ¬((¬P) ∨ (¬Q)) P ∧ Q
F F

F T

T F

T T
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Proofs
Many ways to argue correctness of a statement

Direct proof (P =⇒ Q):
▶ Start from P, logically deduce Q

Proof by contraposition (P =⇒ Q):
▶ Directly prove (¬Q) =⇒ (¬P)

Proof by contradiction (P):
▶ Start with ¬P, reach contradiction

Proof by induction (∀n ∈ N P(n)):
▶ Prove P(0) and P(k) =⇒ P(k + 1)
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Proof Poll
Do an example proof live! Poll for which one:

1. If m|a and n|b, then mn|ab. (Direct)
2. Let x ∈ Z. If x2 + 6x + 5 is even, x is odd.

(Contraposition)
3. Let r be rational and x be irrational. Then

r + x is irrational. (Contradiction)
4. Let x ∈ R and n ∈ N. Then (1 + x)n ≥ 1 + nx.

(Induction)
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Direct Example
If m|a and n|b, then mn|ab.

Proof:
▶ Since m|a, a = km for k ∈ Z
▶ Since n|b, b = jn for j ∈ Z
▶ Hence ab = km · jn = kj(mn)
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Contraposition Example
Let x ∈ Z. If x2 + 6x + 5 is even, x is odd.

Proof:
▶ Contrapos: If x is even, x2 + 6x + 5 is odd.
▶ Suppose x = 2k for some k ∈ Z
▶ x2+6x+5 = 4k2+12k+5 = 2(2k2+6k+2)+1
▶ 2k2 + 6k + 2 ∈ Z, so x2 + 6x + 5 odd
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Contradiction Example
Let r ∈ Q and x be irrational. Then r + x irrational.

Proof:
▶ Suppose r + x = a

b for some a, b ∈ Z
▶ r rational, so r = c

d for some c, d ∈ Z
▶ Hence x = (r + x)− r = a

b −
c
d = ad−cb

bd
▶ So x rational, contradiction!
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Induction Example
Let x ∈ R and n ∈ N. Then (1 + x)n ≥ 1 + nx.

Proof:
▶ Base Case: n = 0, statement is 1 ≥ 1.
▶ Suppose (1 + x)k ≥ 1 + kx
▶ Then we have

(1 + x)k+1 = (1 + x)k(1 + x)
≥ (1 + kx)(1 + x)
= 1 + x + kx + kx2

= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x
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Graph Definitions
Graph is vertices + edges
Use drawings to help visualize

Special kinds of graphs:

Complete

Hypercube

Bipartite

Planar
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Induction on Graphs
Can induct on number of vertices, edges, etc
Be careful of build-up error!
“Shrink down, grow back” can help avoid this

Example: proving Euler’s formula v + f = e + 2
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Euler and Coloring
Euler says planar graphs are sparse: e ≤ 6v − 12
Means always have degree < 6 vertex!
Use to inductively prove 6-color theorem

With more work, also gives 5-color theorem
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Modular Arithmetic
Alternative to arithmetic on the real numbers
Define + and · on {0, 1, 2, ...,m − 1}

Still has “properties we want” from R
Allows for exact addition, multiplication, division,
exponentiation, etc on computers!
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Extended GCD Algorithm
Goal: find (d, a, b) st gcd(x, y) = d = ax + by
Allows us to find inverses if gcd(x, y) = 1!
Recursive call on y, x mod y to get (d′, a′, b′)
Return (d′, b′, a′ − ⌊x

y⌋b′)
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Chinese Remainder Theorem
Given coprime n1, n2, ..., nk, ∃ unique soln modulo
N =

∏
i ni to system of equations x ≡ ai (mod ni)

Key is finding “basis” elements bi st
▶ bi ≡ 1 (mod ni)

▶ bi ≡ 0 (mod nj) for j ̸= i
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Private Key Cryptography

One-Time Pad: xor message w/random, shared pad
Perfect security – but only for one message!
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Public Key Cryptography
RSA: way to avoid logistical issues of OTP
Private key: (N = pq, d)
Public key: (N, e = d−1 (mod (p − 1)(q − 1)))

Encryption: E(m) = me (mod N)
Decryption: D(c) = cd (mod N)
Correctness: FLT + CRT
Security:
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Polynomial Representations
Two equiv representations of degree d polynomials:

▶ Coefficients (cdxd + ...+ c1x + c0)
▶ Values ((x1, y1), ..., (xd+1, yd+1))

Convert coefficients to values: evaluate polynomial
Other direction: Lagrange interpolation
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Interpolation Interpretation
Given points (x1, y1), ..., (xd+1, yd+1), want degree d
poly through them

Key is finding “basis” polys ∆i(x) st
▶ ∆i(xi) = 1
▶ ∆i(xj) = 0 for j ̸= i

Note similarity to proof of CRT!
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Error Correcting Codes
Application of polys: fix transmission errors
Reed-Solomon: interpolate poly through message
P(1) = m1, P(2) = m2, ..., P(n) = mn

Recover P means recover message!
k erasures needs n + k packets
k corruptions needs n + 2k packets
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Countability
Main idea: “same size” means “has bijection”
Use N as point of comparison
eg |N| = |Z| = |Q| = |{0, 1}∗|

To prove a set countable:
▶ Provide bijection with known countable set
▶ Provide injection (1-1) to countable set
▶ Provide surjection (onto) from countable set

Last two from Cantor-Schröder-Bernstein Thm
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Uncountability
Not all sets are the same size as N!

Canonical Example: {0, 1}∞

n o(n)
0 0 0 0 0 0 ...
1 1 0 1 0 1 ...
2 1 1 1 0 1 ...
3 0 1 0 0 0 ...
... ...

Show set uncountable w/diagonalization or show
“same size”/“bigger than” known uncountable set
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Uncomputability
Computers can’t do everything!
Case study: Halting Problem is impossible
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Reductions
Many other problems also uncomputable!
Often easiest to prove with reduction from TestHalt
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Fin
Next time: probability review (with Elizabeth)!
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