Lecture 28: Discrete Math Review Or Is It Discreet Math?

Rough Outline

Today: review of first half of class

- Propositional Logic
- Proofs
- Graphs
- Modular Arithmetic
- Cryptography
- Polynomials
- Error Correcting Codes
- Countability
- Computability

Propositional Logic

Propositions are basic building blocks of logic Allow simplification of complex statements

Examples?

- "Pizza is a legitimate breakfast food." X
- \blacktriangleright "Every integer is either even or odd." \checkmark

• "x + 3 = 7." X

Make formulae w/operators: $\land, \lor, \neg, \Longrightarrow$, etc $(P \lor Q) \Longrightarrow P$ $((\neg P) \iff Q) \land R$

Truth Tables

Formulae are really just functions! Input: T/F values to propositions Output: value of formula

Р	Q	$(\neg P) \lor (\neg Q)$	$\neg((\neg P) \lor (\neg Q))$	$P \wedge Q$
F	F			
F	Т			
Т	F			
Т	Т			

More on propositional / first order logic: Math 125A

Proofs

Many ways to argue correctness of a statement Direct proof ($P \implies Q$):

• Start from P, logically deduce Q

Proof by contraposition ($P \implies Q$):

• Directly prove $(\neg Q) \implies (\neg P)$

Proof by contradiction (P):

• Start with $\neg P$, reach contradiction

Proof by induction $(\forall n \in \mathbb{N} \ P(n))$:

• Prove P(0) and $P(k) \implies P(k+1)$

Proof Poll

Do an example proof live! Poll for which one:

- 1. If m|a and n|b, then mn|ab. (Direct)
- 2. Let $x \in \mathbb{Z}$. If $x^2 + 6x + 5$ is even, x is odd. (Contraposition)
- 3. Let r be rational and x be irrational. Then r + x is irrational. (Contradiction)
- 4. Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then $(1 + x)^n \ge 1 + nx$. (Induction)

Direct Example

If m|a and n|b, then mn|ab.

Proof:

- Since m|a, a = km for $k \in \mathbb{Z}$
- Since n|b, b = jn for $j \in \mathbb{Z}$

• Hence
$$ab = km \cdot jn = kj(mn)$$

Contraposition Example

Let $x \in \mathbb{Z}$. If $x^2 + 6x + 5$ is even, x is odd. **Proof**:

- Contrapos: If x is even, $x^2 + 6x + 5$ is odd.
- Suppose x = 2k for some $k \in \mathbb{Z}$
- ▶ $x^2+6x+5 = 4k^2+12k+5 = 2(2k^2+6k+2)+1$
- ▶ $2k^2 + 6k + 2 \in \mathbb{Z}$, so $x^2 + 6x + 5$ odd

Contradiction Example

Let $r \in \mathbb{Q}$ and x be irrational. Then r + x irrational. **Proof**:

- Suppose $r + x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$
- *r* rational, so $r = \frac{c}{d}$ for some $c, d \in \mathbb{Z}$

• Hence
$$x = (r + x) - r = \frac{a}{b} - \frac{c}{d} = \frac{ad-cb}{bd}$$

So x rational, contradiction!

Induction Example

Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then $(1 + x)^n \ge 1 + nx$.

Proof:

- Base Case: n = 0, statement is $1 \ge 1$.
- Suppose $(1+x)^k \ge 1 + kx$
- Then we have

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

 $\ge (1+kx)(1+x)$
 $= 1+x+kx+kx^2$
 $= 1+(k+1)x+kx^2$
 $\ge 1+(k+1)x$

Graph Definitions

Graph is vertices + edges Use drawings to help visualize

Special kinds of graphs:

Complete

Bipartite

Hypercube

Planar

Induction on Graphs

Can induct on number of vertices, edges, etc

Be careful of build-up error! "Shrink down, grow back" can help avoid this

Example: proving Euler's formula v + f = e + 2

Euler and Coloring

Euler says planar graphs are sparse: $e \le 6v - 12$ Means always have degree < 6 vertex!

Use to inductively prove 6-color theorem

With more work, also gives 5-color theorem

Modular Arithmetic

Alternative to arithmetic on the real numbers Define + and \cdot on $\{0, 1, 2, ..., m-1\}$

Still has "properties we want" from \mathbb{R} Allows for exact addition, multiplication, division, exponentiation, etc on computers!

More in depth look at this: Math 113, Math 115

Extended GCD Algorithm

Goal: find (d, a, b) st gcd(x, y) = d = ax + byAllows us to find inverses if gcd(x, y) = 1!

Recursive call on $y, x \mod y$ to get (d', a', b')Return $(d', b', a' - \lfloor \frac{x}{y} \rfloor b')$

Chinese Remainder Theorem

Given coprime n_1 , n_2 , ..., n_k , \exists unique soln modulo $N = \prod_i n_i$ to system of equations $x \equiv a_i \pmod{n_i}$

Key is finding "basis" elements b_i st

•
$$b_i \equiv 1 \pmod{n_i}$$

•
$$b_i \equiv 0 \pmod{n_j}$$
 for $j \neq i$

Private Key Cryptography

One-Time Pad: xor message w/random, shared pad Perfect security – but only for one message!

Public Key Cryptography

RSA: way to avoid logistical issues of OTP

Private key: (N = pq, d)Public key: $(\textit{N}, \textit{e} = \textit{d}^{-1} \pmod{(\textit{p} - 1)(q - 1)})$

Encryption: $E(m) = m^e \pmod{N}$ Decryption: $D(c) = c^d \pmod{N}$

Correctness: FLT + CRTSecurity: $()_()_/$

Polynomial Representations

Two equiv representations of degree d polynomials:

- Coefficients $(c_d x^d + ... + c_1 x + c_0)$
- Values $((x_1, y_1), ..., (x_{d+1}, y_{d+1}))$

Convert coefficients to values: evaluate polynomial

Other direction: Lagrange interpolation

Interpolation Interpretation

Given points (x_1, y_1) , ..., (x_{d+1}, y_{d+1}) , want degree d poly through them

Key is finding "basis" polys $\Delta_i(x)$ st

•
$$\Delta_i(x_i) = 1$$

•
$$\Delta_i(x_j) = 0$$
 for $j \neq i$

Note similarity to proof of CRT!

Error Correcting Codes

Application of polys: fix transmission errors

Reed-Solomon: interpolate poly through message $P(1) = m_1, P(2) = m_2, ..., P(n) = m_n$

Recover *P* means recover message! *k* erasures needs n + k packets *k* corruptions needs n + 2k packets

Countability

Main idea: "same size" means "has bijection" Use \mathbb{N} as point of comparison

eg $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = |\{0,1\}^*|$

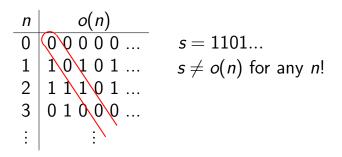
To prove a set countable:

- Provide bijection with known countable set
- ▶ Provide injection (1-1) to countable set
- Provide surjection (onto) from countable set

Last two from Cantor-Schröder-Bernstein Thm

Uncountability

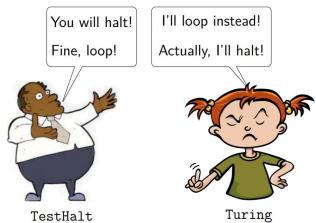
Not all sets are the same size as $\mathbb{N}!$ Canonical Example: $\{0,1\}^{\infty}$



Show set uncountable w/diagonalization or show "same size"/"bigger than" known uncountable set

Uncomputability

Computers can't do everything! Case study: Halting Problem is impossible



Reductions

Many other problems also uncomputable!

Often easiest to prove with reduction from TestHalt

Fin

Next time: probability review (with Elizabeth)!