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Exam Tips

I Skim the exam before starting! Get a sense
for what topic each question is testing

I Problems are usually clear about what parts
depend on each other / whether you can use
previous parts for later parts without doing
the previous parts.

I Long answers sometimes award partial credit.
Skim instructions!
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Resources for Studying

I Past exams: skip questions not in coverage

I Discussion: try the questions again!

I Lecture slides: examples and exercises

I Notes: mainly for theorem statements and
examples; less emphasis on proof

I Homework: lower priority; try to get key
ideas and techniques from each problem
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Counting I

I First Rule of Counting: multiply when
choices don’t depend on each other.

I Lunch menu

I Second Rule of Counting: is there
overcounting by the same amount?
Divide by overcounts.

I Anagrams with repeated letters

I Stars and bars: for indistinguishable items
into distinguishable bins.

I x1 + x2 + x3 = n, splitting dollars
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Counting II

I Other counting techniques:
I Cases
I Complement
I Symmetry
I Inclusion-exclusion

I Combinatorial Proof
I Be explicit about the object you are counting:

I Ex. all binary bitstrings

I Count the LHS and RHS in two different ways.
I Ex. for

∑n
i=0

(
n
i

)
= 2n. LHS is by cases, RHS is

counted by the First Rule, 2 choices per bit.

I Often times, summation = count by cases. Be

explicit about what the cases are.
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Discrete Probability I

I Probability space: if uniform, we reduce it
to a counting problem. # outcomes in event

# total outcomes

I Conditional probability: a change in

probability space: P[A|B] = P[A∩B]
P[B]

I Total probability rule: ”probability by
casework.” Cases are events Bi :
P[A] = P[A|B1] · P[B1] + . . .+ P[A|Bn] · P[Bn]

I When in doubt, draw the tree
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Discrete Probability II

I Bayes: ”flip the conditioning”
I Numerator comes from definition of conditional

I Denominator comes from total probability rule

I Event intersections: chain rule!
I P[A1∩. . .∩An] = P[A1]·P[A2|A1]·P[A3|A1∩A2] · · ·
I If events are mutually independent, can

multiply their probabilities.

I Pairwise does not imply mutual independence

I Union bound: sum of individual probabilities
is an upper bound on probability of union
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Discrete RVs I

I Definition: RVs are functions from
outcomes to real numbers

I {X = i} should be treated as an event.

I Special kinds of RVs:
I Bernoulli: models a single coin flip

I Ex. any indicator variable

I Binomial: sum of i.i.d. Bernoullis
I Ex. number of heads in n coin flips

I Geometric: # of i.i.d. trials until a ”success”
I Ex. number days until winning a lottery

I Poisson: models rare events, given ”rate”
I Ex. typos on a page
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Discrete RVs II

I Functions of RVs: are another RV!
I Values will change using the function;

probabilities don’t change but may get merged

I Expectation: weighted average of values

I E[X ] =
∑
a∈values(X ) a · P[X = a]

I Linearity of expectation: for any two RVs
X , Y (regardless of independence):

E[aX + bY ] = aE[X ] + bE[Y ]
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Discrete RVs III

I Tail sum: another way of computing
expectation for integer valued RVs.

I E[X ] =
∑∞
i=1 P[X ≥ i ]

I Used this for expectation of geometric

I Coupon collector:
I Time after getting the (i − 1)-th coupon until

getting the i-th is Geometric(n−i+1
n

)

I Use approximation
∑n
i=1

1
i
≈ ln n.

I Tip: For questions, always draw the intervals and

analyze them from scratch. Ex: RandomSort is

not coupon collector but uses same strategy.
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Discrete RVs IV

I Variance: expected distance to mean µ
I Var(X ) = E[(X − µ)2] = E[X 2]− E[X ]2

I For computations, latter is more common.

I Standard deviation σ(X ) is
√
Var(X )

I If X ,Y independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

I If c is a constant, Var(cX ) = c2 Var(X ).

I If c is a constant, Var(X + c) = Var(X ).
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Discrete RVs V

I Covariance: do RVs trend with each other?
I Cov(X ,Y ) = E[(X − µX )(Y − µY )]

= E[XY ]− E[X ]E[Y ]

I If X ,Y independent, then Cov(X ,Y ) = 0.

The converse is not true.

I Cov(X ,X ) = Var(X )

I Covariance is bilinear

I Correlation:
Cov(X ,Y )
σ(X )σ(Y )

I Always between −1 and 1 inclusive; equals −1

and 1 when Y = ±X
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Indicator Questions!

I Step 1: What is being counted here?
I Usually: indicator for each thing that could

contribute to the count

I Step 2: Distribution of each indicator?

I Step 3: Expectation
I Usually: linearity of expectation

I Step 4: Variance: Expand (X1 + . . .+ Xn)
2

I What does XiXj = 1 mean in the problem?
I Careful! Check if XiXj is the same for all i , j .
I Don’t forget to subtract E[X ]2
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Break

What was your favorite topic from CS 70?
Least favorite?
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Concentration I

I Markov: non-negative X , P[X ≥ c ] ≤ E[X ]
c

I Check if RV has non-negative values

I If not, can we shift it so that it’s non-negative?

I There are distributions where Markov is tight

(i.e. achieve equality)

I Chebyshev: P[|X − E[X ]| ≥ c ] ≤ Var(X )
c2

I Proven by applying Markov to (X − E[X ])2.

I Works for all random variables

I Interpret |X − E[X ]| as distance to mean
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Concentration II

I Law of Large Numbers: sample mean
approaches true mean

I Formally, let X1,X2, . . . be i.i.d. RVs.

Let µ = E[Xi ]. Let Sn = X1 + X2 + . . .+ Xn.

Sample mean: 1
n

Sn

I The LLN says that with probability → 1, the

sample mean is in an ε-interval around µ.
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Confidence Interval Problems!!
I We’re aware we didn’t cover these in depth;

we won’t ask for one from scratch, but would build it

up step by step if we do test it.

I Step 1: What RV do we care about?
I Compute its expectation and variance.

I Step 2: Mark important values (e.g. E[X ])
on a number line

I Which interval is the event I care about?

I Step 3: Convert lower bounds to upper
bounds; apply Chebyshev

I E.g. change ”at least 95% confidence” to ”at

most 5% on the complement”
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Continuous Probability I

I Events are intervals

I CDF at x tells us P[X ≤ x ]
I CDF actually corresponds to an event

I Usually when we compute PDF, find the CDF

first and differentiate

I Area under PDF = probability of intervals
I PDF should integrate to 1

I Specifies ”P[X = x ]” in the sense where

P[X = x ] ≈ fX (x)dx
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Continuous Probability II

I Special kinds of RVs:
I Exponential: continuous version of geometric

I Memoryless

I Gaussian/ Normal:
I Can shift and scale to a standard normal
I Sum of two independent normals is also normal

I CLT: (normalized) averages ∼ N (0, 1).
I Formally, let X1,X2, . . . be i.i.d. RVs.

Let µ = E[Xi ]. Let An =
X1+X2+...+Xn

n
.

I The CLT says as n →∞, A′n =
An−µ
σ/
√
n

follows a

N (0, 1) distribution.
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Tricks for Continuous!!

I Joint distribution: volumes under a surface
I Translate your event (e.g. t ≤ X ≤ Y ) into a

region on the x-y plane. Integrate the joint PDF

over this distribution.

I For joint distributions that are constants, can

work with shapes in the plane instead of integrals

I Conditioning/total probability
I Try proceeding as you would with discrete.

I Replace
∑

with
∫

, P[X = x ] with fX (x)dx
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Markov Chains I

I Markov property: ”memorylessness”
I The next state only depends on current

I The matrix and vector view
I Place transitions in a matrix. Rows sum to 1.

I The distribution at time n is a row vector.

I Given initial distribution µ(0), the distribution at

time n is µ(0)Pn.
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Markov Chains II

I First step analysis
I Use for expected hitting time, A before B

I From each state, take a single step.

I Where can we end up after that step? With what

probability do we end up at each following state?

I Does leaving that state contribute any ”cost”?

(See Three Tails HW)

22 / 24

Markov Chains III

I Irreducible: possible to go from any state to
any other, in finite # of steps.

I Period: for state i , its period is the GCD of
all walks from i to i

I Aperiodic = all states have period 1

I Stationary distribution: π = πP
I If irreducible, stationary exists and is unique and

the fraction of time in state i approaches πi

I If irreducible, all states have the same period. If

also aperiodic, the probability of being in state i

(µ
(n)
i ) at a sufficiently large time → πi
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What’s Next?

More Probability: EE 126, Stat 134, Stat 140

AI / ML: CS 188, CS 189, Stat 154, Data 102

Data Science: Data 8, Data 100

Statistics: Stat 135, Stat 150

Grad: CS 271, Stat 205
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