

Counting I

- First Rule of Counting: multiply when choices *don't depend on each other*.
 - ► Lunch menu
- Second Rule of Counting: is there overcounting by the same amount? Divide by overcounts.
 - ► Anagrams with repeated letters
- **Stars and bars**: for *indistinguishable* items into *distinguishable* bins.
 - $x_1 + x_2 + x_3 = n$, splitting dollars

Exam Tips

- Skim the exam before starting! Get a sense for what topic each question is testing
- Problems are usually clear about what parts depend on each other / whether you can use previous parts for later parts without doing the previous parts.
- Long answers sometimes award partial credit. Skim instructions!

Counting II

Other counting techniques:

- Cases
- Complement
- Symmetry
- Inclusion-exclusion

Combinatorial Proof

- Be explicit about the object you are counting:
 Ex. all binary bitstrings
- Count the LHS and RHS in two different ways.
 - ► Ex. for ∑ⁿ_{i=0} (ⁿ_i) = 2ⁿ. LHS is by cases, RHS is counted by the First Rule, 2 choices per bit.
- Often times, summation = count by cases. Be explicit about what the cases are.

Resources for Studying

- > Past exams: skip questions not in coverage
- **Discussion**: try the questions again!
- Lecture slides: examples and exercises
- Notes: mainly for theorem statements and examples; less emphasis on proof
- Homework: lower priority; try to get key ideas and techniques from each problem

Discrete Probability I

Probability space: if uniform, we reduce it to a counting problem. # outcomes in event # total outcomes

- ► **Conditional probability**: a change in probability space: $\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$
- ► Total probability rule: "probability by casework." Cases are events B_i:
 ℙ[A] = ℙ[A|B₁] · ℙ[B₁] + ... + ℙ[A|B_n] · ℙ[B_n]
 ► When in doubt, draw the tree

Discrete Probability II

- Bayes: "flip the conditioning"
 - Numerator comes from definition of conditional
 - Denominator comes from total probability rule
- Event intersections: chain rule!
 - $\blacktriangleright \mathbb{P}[A_1 \cap \ldots \cap A_n] = \mathbb{P}[A_1] \cdot \mathbb{P}[A_2 | A_1] \cdot \mathbb{P}[A_3 | A_1 \cap A_2] \cdots$
 - If events are mutually independent, can multiply their probabilities.
 - Pairwise does not imply mutual independence
- **Union bound**: sum of individual probabilities is an upper bound on probability of union (ロ)、(部)、(E)、(E)、(E)、(D)、(O)

Discrete RVs III

Tail sum: another way of computing expectation for integer valued RVs.

• $\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge i]$

- Used this for expectation of geometric
- Coupon collector:
 - Time after getting the (i 1)-th coupon until getting the *i*-th is Geometric $\left(\frac{n-i+1}{n}\right)$
 - Use approximation $\sum_{i=1}^{n} \frac{1}{i} \approx \ln n$.
 - ► Tip: For questions, always draw the intervals and analyze them from scratch. Ex: RandomSort is not coupon collector but uses same strategy.

10/24

Discrete RVs I

- ▶ **Definition**: RVs are *functions* from outcomes to real numbers
 - $\{X = i\}$ should be treated as an event.
- Special kinds of RVs:
 - Bernoulli: models a single coin flip ► Ex. any indicator variable
 - Binomial: sum of i.i.d. Bernoullis
 - Ex. number of heads in n coin flips
 - ▶ Geometric: # of i.i.d. trials until a "success" ► Ex. number days until winning a lottery
 - Poisson: models rare events, given "rate" ► Ex. typos on a page

8/24

Discrete RVs IV

- Variance: expected distance to mean μ
 - $\operatorname{Var}(X) = \mathbb{E}[(X \mu)^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - ► For computations, latter is more common.
 - Standard deviation $\sigma(X)$ is $\sqrt{Var(X)}$
 - ► If X, Y independent, then Var(X + Y) = Var(X) + Var(Y).
 - If c is a constant, $Var(cX) = c^2 Var(X)$
 - If c is a constant, Var(X + c) = Var(X).

Discrete RVs II

- Functions of RVs: are another RV!
 - Values will change using the function; probabilities don't change but may get merged
- **Expectation**: weighted average of values

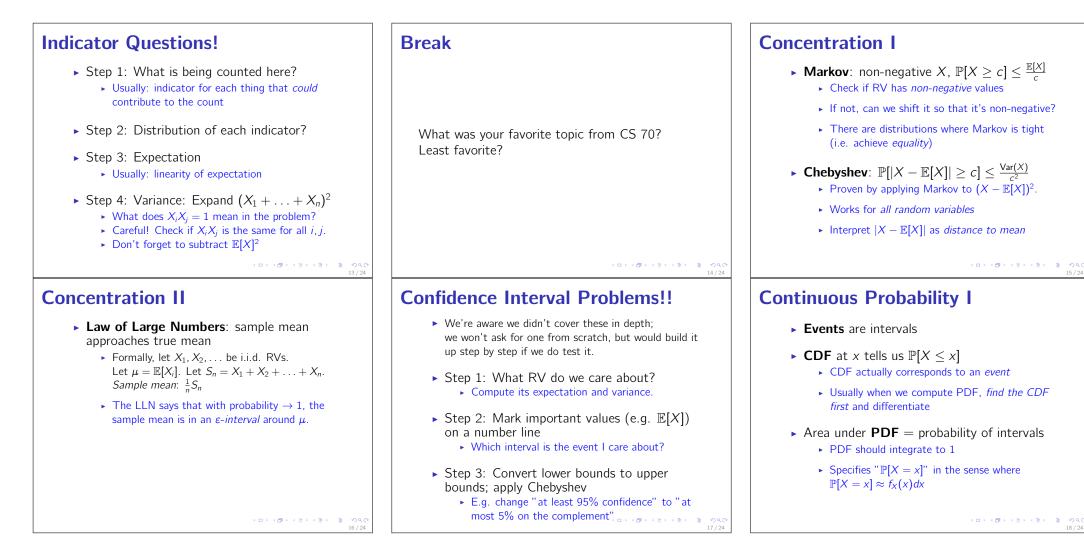
• $\mathbb{E}[X] = \sum_{a \in \text{values}(X)} a \cdot \mathbb{P}[X = a]$

Linearity of expectation: for any two RVs X, Y (regardless of *independence*):

 $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y]$

Discrete RVs V

- **Covariance**: do RVs trend with each other? • $\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
 - If X, Y independent, then Cov(X, Y) = 0. The converse is not true.
 - Cov(X, X) = Var(X)
 - Covariance is bilinear
- Correlation: $\frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$
 - Always between -1 and 1 *inclusive*; equals -1and 1 when $Y = \pm X$

11/24 

15/24

Continuous Probability II

Special kinds of RVs:

- Exponential: continuous version of geometric
 Memoryless
- Gaussian/ Normal:
 - Can shift and scale to a *standard normal*
 - ▶ Sum of two independent normals is also normal

• **CLT**: (normalized) averages $\sim \mathcal{N}(0, 1)$.

- Formally, let X_1, X_2, \dots be i.i.d. RVs. Let $\mu = \mathbb{E}[X_i]$. Let $A_n = \frac{X_1 + X_2 + \dots + X_n}{n}$.
- The CLT says as $n \to \infty$, $A'_n = \frac{A_n \mu}{\sigma/\sqrt{n}}$ follows a $\mathcal{N}(0, 1)$ distribution.

<ロ> (母) (母) (き) (き) (き) き) の(の 19/24

Markov Chains II

- First step analysis
 - Use for expected hitting time, A before B
 - From each state, take a single step.
 - Where can we end up after that step? With what probability do we end up at each following state?
 - Does leaving that state contribute any "cost"? (See Three Tails HW)

Tricks for Continuous!!

- **Joint distribution**: volumes under a surface
 - ► Translate your event (e.g. t ≤ X ≤ Y) into a region on the x-y plane. Integrate the joint PDF over this distribution.
 - For joint distributions that are *constants*, can work with shapes in the plane instead of integrals

Conditioning/total probability

- ► Try proceeding as you would with discrete.
- Replace \sum with \int , $\mathbb{P}[X = x]$ with $f_X(x)dx$

<□> < □> < □> < 2> < 2> < 2> < 2> < 2</td>
 20/24

Markov Chains III

- ► **Irreducible**: possible to go from any state to any other, in finite *#* of steps.
- **Period**: for state *i*, its period is the GCD of all *walks* from *i* to *i*
 - Aperiodic = all states have period 1
- Stationary distribution: $\pi = \pi P$
 - If irreducible, stationary *exists* and *is unique* and the *fraction of time* in state *i* approaches π_i
 - If irreducible, all states have the same period. If also aperiodic, the probability of being in state i $(\mu_i^{(n)})$ at a sufficiently large time $\rightarrow \pi_i$

・ロト・(日)・(日)・(日)・(日)・

23/24

Markov Chains I

- Markov property: "memorylessness"
 - \blacktriangleright The next state only depends on current
- The matrix and vector view
 - Place transitions in a matrix. Rows sum to 1.
 - The distribution at time *n* is a *row vector*.
 - Given initial distribution μ⁽⁰⁾, the distribution at time n is μ⁽⁰⁾Pⁿ.

What's Next?

More Probability: EE 126, Stat 134, Stat 140

Al / ML: CS 188, CS 189, Stat 154, Data 102 $\,$

Data Science: Data 8, Data 100

Statistics: Stat 135, Stat 150

Grad: CS 271, Stat 205