Probability Review

CS 70, Summer 2019

8/13/19

Exam Tips

- Skim the exam before starting! Get a sense for what topic each question is testing
- Problems are usually clear about what parts depend on each other / whether you can use previous parts for later parts without doing the previous parts.
- ► Long answers sometimes award partial credit. Skim instructions!

Resources for Studying

- Past exams: skip questions not in coverage
- Discussion: try the questions again!
- Lecture slides: examples and exercises
- ► **Notes**: mainly for theorem statements and examples; less emphasis on proof
- ► Homework: lower priority; try to get key ideas and techniques from each problem

Counting I

- ► First Rule of Counting: multiply when choices don't depend on each other.
 - ▶ Lunch menu
- Second Rule of Counting: is there overcounting by the same amount? Divide by overcounts.
 - Anagrams with repeated letters
- ▶ **Stars and bars**: for *indistinguishable* items into *distinguishable* bins.
 - $x_1 + x_2 + x_3 = n$, splitting dollars

Counting II

Other counting techniques:

- Cases
- Complement
- Symmetry
- Inclusion-exclusion

Combinatorial Proof

- Be explicit about the object you are counting:
 - Ex. all binary bitstrings
- Count the LHS and RHS in two different ways.
 - ► Ex. for $\sum_{i=0}^{n} {n \choose i} = 2^n$. LHS is by cases, RHS is counted by the First Rule, 2 choices per bit.
- Often times, summation = count by cases. Be explicit about what the cases are.

Discrete Probability I

- ► **Probability space**: if *uniform*, we reduce it to a counting problem. # outcomes in event # total outcomes
- ▶ Conditional probability: a change in probability space: $\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$
- ▶ **Total probability rule**: "probability by casework." Cases are events B_i : $\mathbb{P}[A] = \mathbb{P}[A|B_1] \cdot \mathbb{P}[B_1] + \ldots + \mathbb{P}[A|B_n] \cdot \mathbb{P}[B_n]$
 - ▶ When in doubt, draw the tree

Discrete Probability II

- Bayes: "flip the conditioning"
 - Numerator comes from definition of conditional
 - Denominator comes from total probability rule
- Event intersections: chain rule!
 - $\mathbb{P}[A_1 \cap \ldots \cap A_n] = \mathbb{P}[A_1] \cdot \mathbb{P}[A_2 | A_1] \cdot \mathbb{P}[A_3 | A_1 \cap A_2] \cdots$
 - ▶ If events are **mutually independent**, can multiply their probabilities.
 - Pairwise does not imply mutual independence
- ▶ **Union bound**: sum of individual probabilities is an upper bound on probability of union

Discrete RVs I

- ▶ Definition: RVs are functions from outcomes to real numbers
 - $\{X = i\}$ should be treated as an event.

Special kinds of RVs:

- Bernoulli: models a single coin flip
 - ► Ex. any indicator variable
- ▶ Binomial: sum of i.i.d. Bernoullis
 - ► Ex. number of heads in *n* coin flips
- Geometric: # of i.i.d. trials until a "success"
 - ► Ex. number days until winning a lottery
- Poisson: models rare events, given "rate"
 - Ex. typos on a page

Discrete RVs II

- ▶ Functions of RVs: are another RV!
 - Values will change using the function;
 probabilities don't change but may get merged
- **Expectation**: weighted average of values

$$\blacktriangleright \ \mathbb{E}[X] = \sum_{a \in \mathsf{values}(X)} a \cdot \mathbb{P}[X = a]$$

► **Linearity of expectation**: for *any two* RVs *X*, *Y* (regardless of *independence*):

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

Discrete RVs III

- ► **Tail sum**: another way of computing expectation for *integer valued* RVs.
 - $\blacktriangleright \mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge i]$
 - Used this for expectation of geometric

Coupon collector:

- ► Time after getting the (i-1)-th coupon until getting the i-th is Geometric $(\frac{n-i+1}{n})$
- ▶ Use approximation $\sum_{i=1}^{n} \frac{1}{i} \approx \ln n$.
- ► Tip: For questions, always draw the intervals and analyze them from scratch. Ex: RandomSort is not coupon collector but uses same strategy.

Discrete RVs IV

- **Variance**: expected distance to mean μ
 - $\operatorname{Var}(X) = \mathbb{E}[(X \mu)^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - ► For computations, latter is more common.
 - Standard deviation $\sigma(X)$ is $\sqrt{\operatorname{Var}(X)}$
 - If X, Y independent, then Var(X + Y) = Var(X) + Var(Y).
 - If c is a constant, $Var(cX) = c^2 Var(X)$.
 - If c is a constant, Var(X + c) = Var(X).

Discrete RVs V

- ▶ **Covariance**: do RVs trend with each other?
 - $\mathsf{Cov}(X, Y) = \mathbb{E}[(X \mu_X)(Y \mu_Y)]$ $= \mathbb{E}[XY] \mathbb{E}[X] \mathbb{E}[Y]$
 - If X, Y independent, then Cov(X, Y) = 0. The converse **is not true.**
 - $\mathsf{Cov}(X,X) = \mathsf{Var}(X)$
 - Covariance is bilinear
- ► Correlation: $\frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$
 - Always between -1 and 1 *inclusive*; equals -1 and 1 when Y = +X

Indicator Questions!

- Step 1: What is being counted here?
 - Usually: indicator for each thing that could contribute to the count
- Step 2: Distribution of each indicator?
- Step 3: Expectation
 - Usually: linearity of expectation
- ▶ Step 4: Variance: Expand $(X_1 + ... + X_n)^2$
 - ▶ What does $X_i X_j = 1$ mean in the problem?
 - ► Careful! Check if X_iX_j is the same for all i, j.
 - ▶ Don't forget to subtract $\mathbb{E}[X]^2$

Break

What was your favorite topic from CS 70? Least favorite?

Concentration I

- ▶ **Markov**: non-negative X, $\mathbb{P}[X \geq c] \leq \frac{\mathbb{E}[X]}{c}$
 - ► Check if RV has *non-negative* values
 - ▶ If not, can we shift it so that it's non-negative?
 - ► There are distributions where Markov is tight (i.e. achieve *equality*)
- ▶ Chebyshev: $\mathbb{P}[|X \mathbb{E}[X]| \ge c] \le \frac{\text{Var}(X)}{c^2}$
 - ▶ Proven by applying Markov to $(X \mathbb{E}[X])^2$.
 - Works for all random variables
 - ▶ Interpret $|X \mathbb{E}[X]|$ as distance to mean

Concentration II

- ► Law of Large Numbers: sample mean approaches true mean
 - Formally, let $X_1, X_2, ...$ be i.i.d. RVs. Let $\mu = \mathbb{E}[X_i]$. Let $S_n = X_1 + X_2 + ... + X_n$. Sample mean: $\frac{1}{n}S_n$
 - ► The LLN says that with probability \rightarrow 1, the sample mean is in an ε -interval around μ .

Confidence Interval Problems!!

- We're aware we didn't cover these in depth; we won't ask for one from scratch, but would build it up step by step if we do test it.
- ▶ Step 1: What RV do we care about?
 - Compute its expectation and variance.
- Step 2: Mark important values (e.g. $\mathbb{E}[X]$) on a number line
 - ▶ Which interval is the event I care about?
- Step 3: Convert lower bounds to upper bounds; apply Chebyshev
 - ► E.g. change "at least 95% confidence" to "at most 5% on the complement"

Continuous Probability I

- Events are intervals
- ▶ **CDF** at x tells us $\mathbb{P}[X \leq x]$
 - CDF actually corresponds to an event
 - Usually when we compute PDF, find the CDF first and differentiate
- Area under PDF = probability of intervals
 - ▶ PDF should integrate to 1
 - ▶ Specifies " $\mathbb{P}[X = x]$ " in the sense where $\mathbb{P}[X = x] \approx f_X(x) dx$

Continuous Probability II

- Special kinds of RVs:
 - Exponential: continuous version of geometric
 - Memoryless
 - Gaussian/ Normal:
 - ► Can shift and scale to a *standard normal*
 - Sum of two independent normals is also normal
- ▶ **CLT**: (normalized) averages $\sim \mathcal{N}(0, 1)$.
 - Formally, let $X_1, X_2, ...$ be i.i.d. RVs. Let $\mu = \mathbb{E}[X_i]$. Let $A_n = \frac{X_1 + X_2 + ... + X_n}{n}$.
 - ► The CLT says as $n \to \infty$, $A'_n = \frac{A_n \mu}{\sigma/\sqrt{n}}$ follows a $\mathcal{N}(0, 1)$ distribution.

Tricks for Continuous!!

- ▶ **Joint distribution**: volumes under a surface
 - ► Translate your event (e.g. $t \le X \le Y$) into a region on the x-y plane. Integrate the joint PDF over this distribution.
 - For joint distributions that are constants, can work with shapes in the plane instead of integrals

Conditioning/total probability

- ▶ Try proceeding as you would with discrete.
- ▶ Replace \sum with \int , $\mathbb{P}[X = x]$ with $f_X(x)dx$

Markov Chains I

- Markov property: "memorylessness"
 - ▶ The next state only depends on current
- ► The matrix and vector view
 - ▶ Place transitions in a matrix. Rows sum to 1.
 - ► The distribution at time *n* is a *row vector*.
 - Given initial distribution $\mu^{(0)}$, the distribution at time n is $\mu^{(0)}P^n$.

Markov Chains II

- First step analysis
 - Use for expected hitting time, A before B
 - From each state, take a single step.
 - Where can we end up after that step? With what probability do we end up at each following state?
 - Does leaving that state contribute any "cost"? (See Three Tails HW)

Markov Chains III

- ▶ **Irreducible**: possible to go from any state to any other, in finite # of steps.
- ▶ Period: for state i, its period is the GCD of all walks from i to i
 - Aperiodic = all states have period 1
- ▶ Stationary distribution: $\pi = \pi P$
 - If irreducible, stationary exists and is unique and the fraction of time in state i approaches π_i
 - If irreducible, all states have the same period. If also aperiodic, the probability of being in state i $(\mu_i^{(n)})$ at a sufficiently large time $\to \pi_i$

What's Next?

More Probability: EE 126, Stat 134, Stat 140

AI / ML: CS 188, CS 189, Stat 154, Data 102

Data Science: Data 8, Data 100

Statistics: Stat 135, Stat 150

Grad: CS 271, Stat 205