
Lecture 3: Induction
But then what is outduction?
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Why Induction?
Recall from last lecture the triangle inequality:
Theorem: Let x, y ∈ R. Then |x + y| ≤ |x|+ |y|.

Consider this generalized form:
Theorem: Let n ∈ N, n ̸= 0. Then ∀x1, ..., xn ∈ R,
|x1 + ...+ xn| ≤ |x1|+ ...+ |xn|.
Casework possible, but very tedious.
But what if |x1 + ...+ xn−1| ≤ |x1|+ ...+ |xn−1|?
By original theorem,
|(x1 + ...+ xn−1) + xn| ≤ |x1 + ...+ xn−1|+ |xn|

≤ (|x1|+ ...+ |xn−1|) + |xn|
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Induction Introduction
Principle of Induction: To prove ∀n ∈ N P(n),
suffices to prove
(1) P(0)
(2) ∀k ∈ N [P(k) =⇒ P(k + 1)]

(1) is base case and (2) is inductive step.1

Why does this work?
Certainly, P(0) is true.
If P(0) is true, then P(1) is.
If P(1) is true, then P(2) is.
...

1Supposing that P(k) holds called the inductive hypothesis.
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Generalized Triangle Inequality
Let’s apply this formally:
Theorem: Let n ∈ N, n ̸= 0. Then ∀x1, ..., xn ∈ R,
|x1 + ...+ xn| ≤ |x1|+ ...+ |xn|.

Base Case (n = 1):2
▶ Need |x1| ≤ |x1| ✓

Inductive Step:
▶ Suppose |x1 + ...+ xk| ≤ |x1|+ ...+ |xk|
▶ By the original triangle inequality,
|(x1 + ...+ xk) + xk+1| ≤ |x1 + ...+ xk|+ |xk+1|

▶ Combining these yields
|x1 + ...+ xk+1| ≤ |x1|+ ...+ |xk+1|

2We don’t always have to use 0 for our base case!
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Another Example
Theorem: For all n ∈ N,

n∑
i=0

i = n(n+1)
2 .

Base Case(n = 0):

▶
0∑

i=0
i = 0 = 0(0+1)

2

Inductive Step:

▶ Suppose that
k∑

i=0
i = k(k+1)

2

▶ Then
k+1∑
i=0

i =
k∑

i=0
i + (k + 1) = k(k+1)

2 + (k + 1)

▶ This equals (k+1)(k+2)
2 = (k+1)((k+1)+1)

2
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Two Coloring a Map
How many colors do we need to color a map (such
that adjacent regions are different colors)?

Later: 5 colors is enough3

Today: simplification where boundaries are lines.
Example:

In this case, 2 colors will suffice!

3In fact, 4 colors suffices
6 / 23
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Two Color Proof
Theorem: Let P(n) be “any map with n lines can
be two-colored”. Then ∀n ∈ N P(n).

Base Case(n = 0):
▶ Just one region, so just one color

Inductive Step:
▶ Suppose that P(k) is true
▶ Given map with k + 1 lines, remove one line
▶ P(k) true, so result can be two-colored
▶ Add line back, flip all colors on one side of it

R
B

R
B

R
B

B

R

R R

B
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What If Induction Fails?
Theorem: For all natural numbers n ≥ 1, the sum
of the first n odd numbers is a perfect square.

Base Case (n = 1):
▶ The summation is just 1 ✓

Inductive Step:
▶ Suppose the sum of the first k odds is m2

▶ The (k + 1)st odd number is 2k + 1
▶ Sum of the first k + 1 odds is m2 + 2k + 1
▶ hmm....

Knowing P(k) isn’t enough to get to P(k + 1)!
Seem to be stuck :(
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Look For a Pattern...
Let’s consider a couple of the smaller cases:

▶ n = 1: 1 = 12

▶ n = 2: 1 + 3 = 4 = 22

▶ n = 3: 1 + 3 + 5 = 9 = 32

▶ n = 4: 1 + 3 + 5 + 7 = 16 = 42

Hmm, looks like the sum always works out to n2...
Try proving it!
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...and Prove It!
Theorem: For all natural numbers n ≥ 1, the sum
of the first n odd numbers is n2.

Base Case(n = 1):
▶ The summation is just 1, which is indeed 12

Inductive Step:
▶ Suppose the sum of the first k odds is k2

▶ The (k + 1)st odd number is 2k + 1
▶ So the sum of the first k + 1 odds is

k2 + 2k + 1 = (k + 1)2

Wait–this wasn’t the theorem we wanted to prove!
But new theorem implies old one.
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Strengthening the Inductive Hypothesis
What we just did is called strengthening the
inductive hypothesis.
General form: want to prove ∀n P(n), instead prove
∀n Q(n), where Q(n) =⇒ P(n)

Seems like this should be harder to prove...
...but Q(k) can give us more information!
Look for patterns when strengthening.
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Another Strengthening Example
Theorem: For all natural numbers n,

n∑
i=0

2−i ≤ 2.

Base Case(n = 0):

▶
0∑

i=0
2−i = 20 = 1 ≤ 2

Inductive Step:

▶ Suppose
k∑

i=0
2−i ≤ 2

▶ We have
k+1∑
i=0

2−i =
k∑

i=0
2−i + 2−k−1 ≤ 2 + 2−k−1

▶ Well drat...
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You Can’t Handle the Pattern!
Look at small examples:

▶ n = 0: 20 = 1
▶ n = 1: 20 + 2−1 = 3

2
▶ n = 2: 20 + 2−1 + 2−2 = 7

4
▶ n = 3: 20 + 2−1 + 2−2 + 2−3 = 15

8

Huh, seems to always work out to 2 − 2−n...
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A New Theorem
Stronger Theorem: ∀n ∈ N,

n∑
i=0

2−i = 2 − 2−n.

Base Case(n = 0):

▶
0∑

i=0
2−i = 20 = 1 = 2 − 1

Inductive Step

▶ Suppose
k∑

i=0
2−i = 2 − 2−k

▶
k+1∑
i=0

2−i =
k∑

i=0
2−i + 2−k−1 = 2 − 2−k + 2−k−1

▶ 2−k − 2−k−1 = 2−k−1
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Break Time!
Take a 4 minute breather! Talk with neighbors :)

Today’s Discussion Question:
If you could eliminate one food so that no one would
eat it ever again, what would you pick to destroy?
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Other Fixes
Theorem: All n ∈ N st n ≥ 2 have a prime factor.4

Base Case(n = 2):
▶ 2 is prime, and a factor of itself

Inductive Step:
▶ Suppose that k has a prime factor
▶ What does this tell us about k + 1?
▶ ...

Not enough information from k alone :(
But wait! Already proved everything k and smaller!

4Recall that this was an unproved lemma from last lecture.
16 / 23
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Strong Induction
Strong Inductive Principle: To prove
∀n ∈ N P(n), suffices to prove
(1) P(0)
(2) ∀k ∈ N [(P(0) ∧ ... ∧ P(k)) =⇒ P(k + 1)]

Why does this work?
Certainly P(0) is true.
If P(0) is true, then P(1) is.
If P(0) and P(1) are true, then P(2) is.
...
Same domino idea as regular induction — but now
new domino pushed over by all previous ones
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Strong Induction Example
Theorem: All n ∈ N st n ≥ 2 have a prime factor.
Base Case(n = 2):

▶ 2 is prime, and a factor of itself

Inductive Step:
▶ Suppose true for all n st 2 ≤ n ≤ k
▶ If k + 1 is prime, done
▶ Else, k + 1 has a non-trivial factor a
▶ 2 ≤ a ≤ k, so a has a prime factor p
▶ Then p is a prime factor of k + 1

18 / 23
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Questionable Naming Conventions
Claim: Regular induction and strong induction can
prove exactly the same statements.

Why does regular proof imply strong proof?
▶ Only need to know P(k)
▶ Just ignore P(0) through P(k − 1)!

Why does strong proof imply regular proof?
▶ Consider Q(n) := (∀k ≤ n) P(n)
▶ Prove P(n) by strengthening to Q(n)!

Strong induction still useful–makes proofs easier!

19 / 23
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Induction and Recursion
Recall recursion: function that calls itself

How to prove that a recursive algorithm works?
Use induction!5 Assume that subcalls just work.
Example: binary search

▶ Input: sorted list ℓ, target element e
▶ If len(ℓ) is 1, return true iff single element is e
▶ If center larger than e, recurse on left half
▶ If center smaller than e, recurse on right half
▶ If center is e, return true

5For most algorithms, you will need to use strong induction
20 / 23
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Binary Search Is Actually Legit
Theorem: For all non-zero n ∈ N, binary search
always returns the correct answer if len(ℓ) is n.

Base Case(n = 1):
▶ True iff only element is e

Inductive Step:
▶ Suppose that BS works for lists k and smaller
▶ Let ℓ be a list of size k + 1
▶ If e ̸∈ ℓ, e won’t be in half we recurse on

▶ BS works on smaller lists, will return false
▶ If e ∈ ℓ, find it or in half-list recursed on

▶ BS works on smaller lists, will return true
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A Proof! My Country For a Proof!
Claim: All horses are the same color.
Formally, will “prove” P(n) := “any n horses all are
the same color”

Base Case(n = 1):
▶ Only 1 horse, certainly the same color as itself

Inductive Step
▶ Suppose P(k) holds.
▶ Consider k + 1 horses h1, h2, ..., hk+1
▶ P(k): h1, ..., hk all same; h2, ..., hk+1 all same
▶ Sets overlap, so all k + 1 horses same!

Issue: sets don’t overlap when k = 1!
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Fin
Next time: graph theory!
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