The Poisson Arrival Process

CS 70, Summer 2019

Bonus Lecture, 8/14/19

4□ > 4♂ > 4≥ > 4≥ > ≥ 40 Q € 1/22

Adding Poissons: Review

Let $T_1 \sim \mathsf{Poisson}(\lambda_1)$ be the number of particles detected by Machine 1 over 3 hours.

Let $T_2 \sim \mathsf{Poisson}(\lambda_2)$ be the number of particles detected by Machine 2 over 4 hours.

The machines run independently.

What is the distribution of $T_1 + T_2$?

$$T_1 + T_2 \sim Poisson(\lambda_1 + \lambda_2)$$

□ ▶ ◀중▶ ◀동▶ ◀동▶ 동 ♥9 Q C 4/22

Poisson Distribution: Review

Values: non neg integers

Parameter(s): \(\cap \), "rate"

$$\mathbb{P}[X=i] = \mathbb{C}^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

$$\mathbb{E}[X] = \lambda$$

$$Var[X] = \lambda$$

Adding Poissons: Twist?

What is the distribution of the **total number of**particles detected across both machines over 5

$$T_1/= \#$$
 particles from M1 in 1 hour $T_2'= "$ " M2" "

40 + 40 + 42 + 42 + 2 990

$$T_1' \sim Poisson(\frac{\lambda_1}{3})$$

 $T_2' \sim Poisson(\frac{\lambda_2}{4})$

1 hour:
$$T_1' + T_2' \sim Poi\left(\frac{\lambda_1}{3} + \frac{\lambda_2}{4}\right)$$

5 hour:
$$\sim Poi\left[5\left(\frac{\lambda_1}{3} + \frac{\lambda_2}{4}\right)\right]$$

Poisson Over Time

Let $B_1 \sim \text{Poisson}(\lambda)$ be the number of bikes that are stolen on campus in one hour. (Go bears?)

What is the distribution of $B_{2.5}$, the number of bikes that are stolen on campus in two hours?

$$B_{2.5} \sim Poisson(2.5 \lambda)$$

 $E[B_{2.5}] = 2.5 \lambda$
Rate over time $T = T \cdot \lambda$

Decomposing Poissons

Let $T \sim \mathsf{Poisson}(\lambda)$ be the number of particles detected by a machine over one hour.

Each particle behaves **independently** of others.

Each detected particle is an α -particle with probability p, and a β -particle otherwise.

Let T_{α} be the number of α -particles detected by a machine over one hour. What is its distribution?

> 4回 > 4回 > 4 E > 4 E > E 9 Q 6/2*

Decomposing Poissons Goal, P[T=a]

Let T_{α} be the number of α -particles detected by a machine over one hour. What is its distribution? $|P[T_{\alpha} = \alpha]| = \sum_{n=0}^{\infty} |P[(T_{\alpha} = \alpha) \cap (T = n)]| \leq \text{Total Prob.}$ $= \sum_{n=0}^{\infty} (e^{-\lambda} \cdot \frac{\lambda^n}{n!}) \binom{n}{\alpha} P^{\alpha} (1-P)^{n-\alpha}$ $= \sum_{n=0}^{\infty} e^{-\lambda p} e^{-\lambda(1-p)} \frac{\lambda^{\alpha} \cdot \lambda^{n-\alpha}}{\lambda^{\alpha} \cdot \lambda^{n-\alpha}} \cdot \binom{\lambda^{\alpha}}{\alpha!} P^{\alpha} (1-p)^{n-\alpha}$ $= (e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!}) (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{n-\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{n-\alpha}$ $= e^{-\lambda p} \cdot \frac{(\lambda p)^{\alpha}}{\alpha!} (e^{-\lambda(1-p)}) \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^{\alpha}}{(n-\alpha)!} P^{\alpha} (1-p)^{\alpha} (1-p)^{\alpha$

Exponential Distribution: Review

Values: $[0, \infty)$

Parameter(s): λ

"
$$\mathbb{A} = \mathbb{A} = \mathbb{A}$$

$$\mathbb{E}[X] = \frac{1}{\lambda}$$

$$Var[X] = \frac{1}{\lambda^2}$$

+□→ →□→ → E→ → E→ → Q(10/22

Independence?

Are T_{α} and T_{β} independent? YES.

Break

If you could rename the Poisson RV (or any RV for that matter), what would you call it?

40 + 40 + 42 + 42 + 2 990

Decomposing Poissons Remix

Now there are 3 kinds of particles: α , β , γ .

Each detected particle behaves independently of others, and is α with probability p, β with probability q, and γ otherwise.

$$T_{\alpha} \sim \text{Poisson}(\lambda p)$$
 $T_{\beta} \sim \text{Poisson}(\lambda q)$
 $T_{\gamma} \sim \text{Poisson}(\lambda (1-p-q))$

Punt: T_{α} , T_{β} , T_{γ} are **mutually independent**. Sanity Check: $T_{\alpha} + T_{\beta} + T_{\gamma} \sim \text{Poisson}(\lambda)$

(D) (B) (E) (E) E 90

Poisson Arrival Process Properties

We'll now work with a specific setup:

- ► There are **independent** "arrivals" over time.
- The time between consecutive arrivals is $Expo(\lambda)$. We call λ the **rate**. Times between arrivals also **independent**.
- For a time period of length t, the **number of** arrivals in that period is Poisson(λt).
- ► Disjoint time intervals have independent numbers of arrivals.

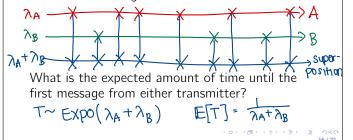
ト 4 回 ト 4 差 ト 4 差 ト 差 ・ 夕 Q 12 / 2

Poisson Arrival Process: A Visual # arrivals ~ Poisson (λt) $0 \times 1 \times 2 \times 3 \times 4 \times 5 \text{ Time}$ Intuition: $E[\text{inter-arrival time}] = \frac{1}{\lambda}$ Unit time \Rightarrow See $\frac{1}{\lambda} = \lambda = E[\text{Poisson}]$

Transmitters II: Superposition

Transmitters A, B sends messages according to Poisson Processes of rates λ_A , λ_B respectively. The two transmitters are **independent**.

We receive messages from both A and B.



Transmitters I

A transmitter sends messages according to a Poisson Process with hourly rate λ .

Given that I've seen 0 messages at time t, what is the expected time until I see the first?

$$X_1 \sim \text{Expo}(\lambda)$$

Memorylessness: $P[X \ge S+t \mid X \ge t] = P[X \ge S]$

At time t, can "reset"

Treat time t as time 0.

Expected first arrival = $\frac{1}{2}$ time after t

Transmitters II: Superposition

Transmitters A, B sends messages according to Poisson Processes of rates λ_A , λ_B respectively. The two transmitters are **independent**.

We receive messages from both A and B.

repeat

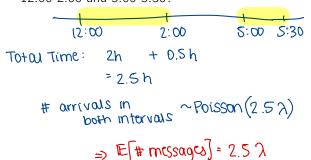
What is the expected amount of time until the first message from either transmitter?

 4 □ > 4 ∰ > 4 ½ > 4 ½ >
 ½

 17/22

Transmitters I

How many messages should I expect to see from 12:00-2:00 and 5:00-5:30?



<ロ>→ 4冊> 4畳> 4畳> 4畳> 2 りQ() 15/22

Transmitters II: Superposition

If the messages from A all have 3 words, and the messages from B all have 2 words, how many words do we expect to see from 12:00-2:00?

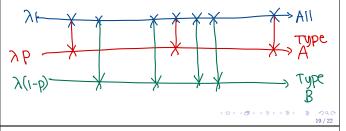
$$M_A = \#$$
 messages from A, 12:00-2:00
 $M_B = \#$ B, $\#$
 $M_A \sim Poisson(\lambda_A \cdot 2)$
 $M_B \sim Poisson(\lambda_B \cdot 2)$
 $E[words] = E[3M_A + 2M_B]$
 $= 3E[M_A] + 2E[M_B] = 6\lambda_A + 4\lambda_B$

+□ → + (5) → + (2) → + (2) → (2) + (3) + (4) +

Kidney Donation: Decomposition

My probability instructor's favorite example...

Kidney donations at a hospital follow a Poisson Process of rate λ per day. Each kidney either comes from blood type A or blood type B, with probabilities p and (1-p) respectively.



Summary

When working with **time**, use $Expo(\lambda)$ RVs.

When working with **counts**, use Poisson(λ) RVs.

Superposition: combine independent Poisson Processes, **add** their rates.

Decomposition: break Poisson Process with rate λ down into rates $p_1\lambda$, $p_2\lambda$, and so on, where p_i 's are probabilities.

Kidney Donation: Decomposition

If I have blood type B, how long do I need to wait before receiving a compatible kidney?

Type B: Poisson Process rate $\lambda(i-p)$

T= time until first B. $T \sim \text{EXPO}(\lambda(1-p))$ $\mathbb{E}[T] = \frac{1}{\lambda(1-p)}$ Say I just received a type A kidney.

The patient receiving a type A kidney after me is expected to live 50 more days without a kidney donation. What is the probability they survive?

T = time until next A kidney.

$$T \sim \text{Expo}(\lambda p)$$

$$P[T \leq 50] = \int_{50}^{50} \lambda p e^{-\lambda p x} dx = 1 - e^{-(\lambda p)(50)}$$

Kidney Donation: Decomposition

Now imagine kidneys are types A, B, O with probabilities p, q, (1 - p - q), respectively.

If I have type B blood, I can receive both B and O. How many compatible kidneys do I expect to see over the next 3 days?

