The Poisson Arrival Process

CS 70, Summer 2019

Bonus Lecture, 8/14/19

Poisson Distribution: Review

Values: non-neg integers

Parameter(s): λ , "rate" $\mathbb{P}[X = i] = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$

 $\mathbb{E}[X] = \lambda$

 $Var[X] = \lambda$

Poisson Over Time

Let $B_1 \sim \text{Poisson}(\lambda)$ be the number of bikes that are stolen on campus in one hour. (Go bears?)

What is the distribution of $B_{2.5}$, the number of bikes that are stolen on campus in two hours? and a half

 $B_{2.5} \sim Poisson(2.5 \lambda)$ $E[B_{2.5}] = 2.5 \lambda$ Rate over time $T = T \cdot \lambda$

Adding Poissons: Review

Let $T_1 \sim \text{Poisson}(\lambda_1)$ be the number of particles detected by Machine 1 over 3 hours.

Let $T_2 \sim \text{Poisson}(\lambda_2)$ be the number of particles detected by Machine 2 over 4 hours.

The machines run **independently**.

What is the distribution of $T_1 + T_2$?

$$T_1 + T_2 \sim Poisson(\lambda_1 + \lambda_2)$$

Adding Poissons: Twist?

What is the distribution of the **total number of particles detected across both machines** over 5 hours?

 $T_{1}' = # particles from M1 in 1 hour$ $<math>T_{2}' = " " M2 " "$ $T_{1}' \sim \text{Poisson}\left(\frac{\lambda_{1}}{3}\right)$ $T_{2}' \sim \text{Poisson}\left(\frac{\lambda_{2}}{4}\right)$ $1 \text{ hour: } T_{1}' + T_{2}' \sim \text{Poi}\left(\frac{\lambda_{1}}{3} + \frac{\lambda_{2}}{4}\right)$ 5 hour: ~ $Poi\left[5\left(\frac{\lambda_1}{3}+\frac{\lambda_2}{4}\right)\right]$

Decomposing Poissons

Let $T \sim \text{Poisson}(\lambda)$ be the number of particles detected by a machine over one hour.

Each particle behaves **independently** of others.

Each detected particle is an α -particle with probability p, and a β -particle otherwise.

Let T_{α} be the number of α -particles detected by a machine over one hour. What is its distribution?

Decomposing Poissons Goal, $P[T_{a} = a]$

Let T_{α} be the number of α -particles detected by The control of the second problem of the se a machine over one hour. What is its distribution? Taylor senics for ex(1-p) $\begin{array}{l} = e^{-\gamma r} \cdot \frac{1}{\alpha r} \\ \text{How about } T_{\beta}, \text{ the number of } \beta \text{-particles}? \\ T_{\beta} \sim Poisson(\lambda(1-p)) \\ T_{\beta} \sim Poisson(\lambda(1-p)) \end{array}$

Independence?

Are T_{α} and T_{β} independent? Yes.

Decomposing Poissons Remix

Now there are 3 kinds of particles: α , β , γ .

Each detected particle behaves independently of others, and is α with probability p, β with probability q, and γ otherwise.

 $T_{\alpha} \sim \text{Poisson}(\lambda p)$ $T_{\beta} \sim \text{Poisson}(\lambda q)$ $T_{\gamma} \sim \text{Poisson}(\lambda (1 - p - q))$ Punt: $T_{\alpha}, T_{\beta}, T_{\gamma}$ are **mutually independent**. Sanity Check: $T_{\alpha} + T_{\beta} + T_{\gamma} \sim \text{Poisson}(\lambda)$

イロト イポト イラト イラト 一日

Exponential Distribution: Review

Values: $\begin{bmatrix} 0 & \infty \end{bmatrix}$ Parameter(s): λ " $\mathbb{R}[\mathcal{R} \neq V] \stackrel{"}{=} PDF$: $f_{\chi}(\chi) = \lambda e^{-\lambda \chi}$

$$\mathbb{E}[X] = \frac{1}{\lambda}$$
$$Var[X] = \frac{1}{\lambda^2}$$

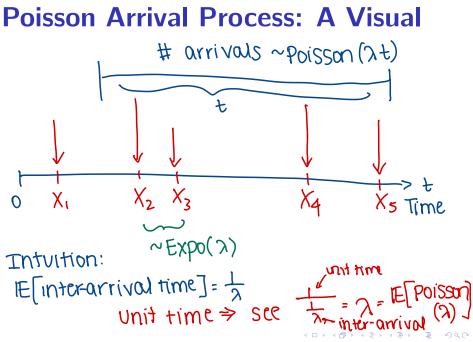
Break

If you could rename the Poisson RV (or any RV for that matter), what would you call it?

Poisson Arrival Process Properties

We'll now work with a specific setup:

- ► There are **independent** "arrivals" over time.
- The time between consecutive arrivals is Expo(λ). We call λ the rate.
 Times between arrivals also independent.
- For a time period of length t, the number of arrivals in that period is Poisson(λt).
- Disjoint time intervals have independent numbers of arrivals.



Transmitters I

A transmitter sends messages according to a Poisson Process with hourly rate λ .

Given that I've seen 0 messages at time t, what is the expected time until I see the first?

 $X_{1} \sim Expo(\lambda)$ Memorylessness: $\mathbb{P}[X \ge S+t | X \ge t] = \mathbb{P}[X \ge S]$ At time t, can "reset" Treat time t as time 0. Expected first arrival = $\frac{1}{2}$ time after t

Transmitters I

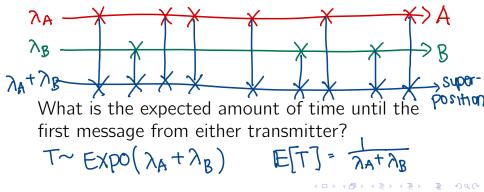
How many messages should I expect to see from 12:00-2:00 and 5:00-5:30?

12:00 7:00 5:00 5:30 2h + 0.5hTotal Time: = 25h # arrivals in ~ Poisson (2.5 2) both intervals => E[# mcssages] = 2.5 h

Transmitters II: Superposition

Transmitters A, B sends messages according to Poisson Processes of rates λ_A , λ_B respectively. The two transmitters are **independent**.

We receive messages from both A and B.



Transmitters II: Superposition

Transmitters A, B sends messages according to Poisson Processes of rates λ_A , λ_B respectively. The two transmitters are **independent**.

We receive messages from both A and B.

What is the expected amount of time until the first message from either transmitter?

repeat

Transmitters II: Superposition

If the messages from A all have 3 words, and the messages from B all have 2 words, how many words do we expect to see from 12:00-2:00?

 $M_{A} = # messages from A, 12:00-2:00$ $M_{B} = " B, "$

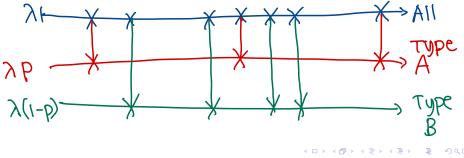
 $M_A \sim Poisson(\lambda_A \cdot 2)$ $M_B \sim Poisson(\lambda_B \cdot 2)$

 $E[words] = E[3M_A + 2M_B]$ = $3E[M_A] + 2E[M_B] = 6\lambda_A + 4\lambda_B$

Kidney Donation: Decomposition

My probability instructor's favorite example...

Kidney donations at a hospital follow a Poisson Process of rate λ per day. Each kidney either comes from blood type A or blood type B, with probabilities p and (1 - p) respectively.



19/22

Kidney Donation: Decomposition

If I have blood type B, how long do I need to wait before receiving a compatible kidney? Type B: POISSON Process rate $\lambda(I-p)$ T= time until first B. $T \sim EXPO(\lambda(I-P))$ $E[T] = \lambda(I-T)$ Say I just received a type A kidney. The patient receiving a type A kidney after me is expected to live 50 more days without a kidney donation. What is the probability they survive?

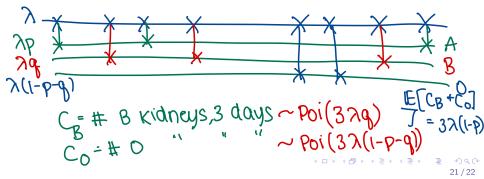
T= time until next A kidney.

 $T \sim E \times po(\lambda p)$ $P[T \leq 50] = \int_{0}^{50} \lambda p e^{-\lambda p \chi} d\chi = 1 - e^{-(\lambda p)(50)}$

Kidney Donation: Decomposition

Now imagine kidneys are types A, B, O with probabilities p, q, (1 - p - q), respectively.

If I have type B blood, I can receive both B and O. How many compatible kidneys do I expect to see over the next 3 days?



Summary

When working with **time**, use $Expo(\lambda)$ RVs.

When working with **counts**, use $Poisson(\lambda)$ RVs.

Superposition: combine independent Poisson Processes, **add** their rates.

Decomposition: break Poisson Process with rate λ down into rates $p_1\lambda$, $p_2\lambda$, and so on, where p_i 's are probabilities.