Internship Lecture 31: Stable Marriage Algorithm

Heteronormativity Is Dumb.

Announcements

End of course survey should now have all staff members!

Due by 11:59 PM tomorrow — pls fill it out!

Problem Statement

4 students applying for internships

4 companies want 1 intern each

Everyone has a preference:

Stdnt	Preferences	Comp	Preferences
Α	4 > 3 > 1 > 2	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	Λ	B > C > A > D

Who should work where?

,,

Bad Matching

Stdnt	Preferences	(Comp	Preferences
A	4 > 3 > 1 > 2		1	B > D > C > A
В	3 > 4 > 1 > 2		2	B > D > A > C
C	4 > 1 > 3 > 2		3	B > A > D > C
D	3 > 2 > 1 > 4		4	B > C > A > D

Should B work at 1?

B wants to work at 3, 3 wants B Incentive for both to leave system

Want to avoid this kind of problem

Stability

Rogue pair is company + student that prefer each other over assigned counterpart

Matching **stable** if no rogue pairs

Goal: Given preference lists, find stable pairing

Is It Stable?

Stdnt	Preferences	Comp	Preferences
Α	4 > 3 > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

Is (A, 4), (B, 3), (C, 1), (D, 2) stable? No — (4, C) is rogue!

What about (A, 1), (B, 3), (C, 4), (D, 2)? Yep!

5 / 23

Is Stability Guaranteed?

Natural Q: is there always a stable matching? Not immediately obvious!

Consider "Stable Roomates":

Person	Preferences
Α	B > C > D
В	C > A > D
С	A > B > D
D	A > B > C

Possible pairings:

- ► (*A*, *B*), (*C*, *D*)
- \triangleright (A, C), (B, D)
- \triangleright (A, D), (B, C)

Gale-Shapley Algorithm

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Morning: Students apply to top company on list **Afternoon**: Companies reject all but top applicant **Evening**: Rejected students cross off company

Algorithm stops once no rejections.

Claim: Algorithm always terminates No more than n^2 rejections possible!

Example Run Day 1

Stdnt	Preferences	Comp	Preferences
Α	4 > 3 > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
С	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

/ 23

Example Run Day 2

Stdnt	Preferences	Comp	Preferences
Α	X > 3 > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	X > 2 > 1 > 4	4	B > C > A > D

Example Run Day 3

Stdnt	Preferences	Comp	Preferences
Α	X > X > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	X > 2 > 1 > 4	4	B > C > A > D

Example Run Day 3

Stdnt	Preferences	Comp	Preferences
\overline{A}	X > X > X > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	X > 2 > 1 > 4	4	B > C > A > D

Algorithm terminates with matching (A, 1), (B, 3), (C, 4), (D, 2)

Stable here — how do we know it always is?

11/23

Improvement Lemma

Say company "interviewing" student if student applies and not yet rejected

Lemma: If S applies to C on day k, C interviewing S or better on every subsequent day

Proof:

- ► Base Case: S applies on day *k*, so best applicant S or better
- ▶ Suppose interviews $S' \ge S$ on day $j \ge k$
- ▶ S' applies on day j+1, so best \geq S' \geq S

Lemma Not Cool Enough To Have Name

Lemma: Applications on last day form a pairing

Proof:

- ▶ No rejections, so ≤ 1 applicant per job
- ► Only poss issue if student rejected everywhere!
- ► That student applied everywhere
- ▶ Improvement Lemma: comps have better stdnt
- ▶ Would need more students than companies!

Now just have to prove no rogue couples!

Wrapping It Up

Theorem: Matching at end of algo is stable

Proof:

- ► Suppose have (S, C) matched, (S, C*) rogue
- ▶ Def of rogue: S likes C* > C
- ▶ So in algorithm S applied to C*
- ▶ Improvement Lemma: C* has better than S
- ▶ So C* wouldn't go rogue contradiction!

14/23

Our Final Break :'(

Time to take a break!

Two options:

- Normal discussion question
- ▶ I can show you a magic trick

Today's Discussion Question:

Is a hot dog a taco?

Magic Trick

Optimality

Is the stable pairing we get good? What is "good"?

Def: Optimal company for S is best they can get *in* any stable pairing

Not necessarily top of their list!

Stdnt	Preferences	Comp	Preferences
Α	4 > 3 > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
С	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

Optimal Pairing

Theorem: Pairing from algorithm gives all students their optimal company

Proof.

Show: no student rejected by opt company on day k

- ▶ Base Case: Day 1
- ► Suppose S rejected by C* in favor of S'
- $ightharpoonup C^*$ opt for S, so have stable pairing $w/(S, C^*)$
- ▶ S' has company C' in that pairing
- S' applies to C* on first day, so C* \geq C'
- ightharpoonup C* rejects S, so S' \geq S
- ▶ (S', C*) rogue contradiction!

Optimality Inductive Step

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k+1

Proof:

- ► Suppose S rejected by C* in favor of S'
- $ightharpoonup C^*$ opt for S, so have stable pairing w/(S, C*)
- ▶ S' has company C' in pairing; opt company C'*
- ▶ Ind Hypothesis: S' not rejected by C'*
- ► So for S', C* > C'* > C'
- $ightharpoonup C^*$ rejects S, so S' > S
- ▶ (S', C*) rogue contradiction!

20 / 23

Pessimality

What is opposite of optimal?

Def: Pessimal student for C is worst they get *in any* stable pairing

Not necessarily bottom of their list!

Stdnt	Preferences	Comp	Preferences
Α	4 > 3 > 2 > 1	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
C	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

21 /

Perfectly Balanced, As All Things Should Be

Thm: Algorithm output pessimal for companies

Proof:

- ► Let output pair S with C
- ▶ Suppose \exists stable pairing with (S', C), S' \leq S
- $\,\blacktriangleright\,$ Let C' be S' company in that pairing
- \blacktriangleright C optimal for S, so C' \leq C
- $\,\blacktriangleright\,$ Then (C, S) is rogue contradiction!

Fin

Good luck on the final!

22 /