Internship Lecture 31: Stable Marriage Algorithm

Heteronormativity Is Dumb.

Announcements

End of course survey should now have all staff members! Due by 11:59 PM tomorrow — pls fill it out!

Problem Statement

4 students applying for internships

4 companies want 1 intern each

Problem Statement

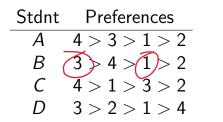
4 students applying for internships 4 companies want 1 intern each

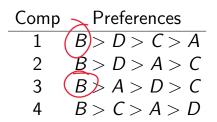
Everyone has a preference:

Stdnt	Preferences	Comp	Preferences
A	4 > 3 > 1 > 2	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
С	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

Who should work where?

Bad Matching





Should B work at 1?

Bad Matching

Stdnt	Preferences	Comp	Preferences
A	4 > 3 > 1 > 2	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
С	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

Should B work at 1?

B wants to work at 3, 3 wants B Incentive for both to leave system

Bad Matching

Stdnt	Preferences	Comp	Preferences
A	4 > 3 > 1 > 2	1	B > D > C > A
В	3 > 4 > 1 > 2	2	B > D > A > C
С	4 > 1 > 3 > 2	3	B > A > D > C
D	3 > 2 > 1 > 4	4	B > C > A > D

Should B work at 1?

B wants to work at 3, 3 wants B Incentive for both to leave system

Want to avoid this kind of problem

Stability

Rogue pair is company + student that prefer each other over assigned counterpart

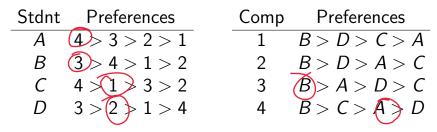
Matching stable if no rogue pairs

Stability

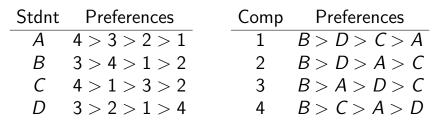
Rogue pair is company + student that prefer each other over assigned counterpart

Matching stable if no rogue pairs

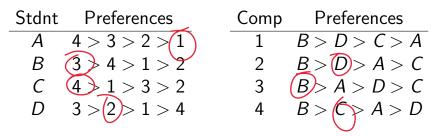
Goal: Given preference lists, find stable pairing



Is (A, 4), (B, 3), (C, 1), (D, 2) stable?

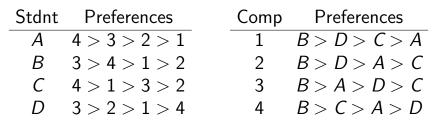


Is (A, 4), (B, 3), (C, 1), (D, 2) stable? No — (4, C) is rogue!



Is (A, 4), (B, 3), (C, 1), (D, 2) stable? No — (4, C) is rogue!

What about (A, 1), (B, 3), (C, 4), (D, 2)?



Is (A, 4), (B, 3), (C, 1), (D, 2) stable? No — (4, C) is rogue!

What about (A, 1), (B, 3), (C, 4), (D, 2)? Yep!

Is Stability Guaranteed?

Natural Q: is there always a stable matching?

Is Stability Guaranteed?

Natural Q: is there always a stable matching? Not immediately obvious!

Is Stability Guaranteed?

Natural Q: is there always a stable matching? Not immediately obvious!

Consider "Stable Roomates":

Person Preferences B > C > DΑ $B \quad C > A > D$ $C \quad A > B > D$ D A > B > CPossible pairings: ► (A, B), (C, D) (A, C), (B, D) →
(A, D), (B, C) ____

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Morning: Students apply to top company on list

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Morning: Students apply to top company on list **Afternoon**: Companies reject all but top applicant

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Morning: Students apply to top company on list **Afternoon**: Companies reject all but top applicant **Evening**: Rejected students cross off company

Turns out, internships always has stable matching! Prove by giving algorithm to find one

Morning: Students apply to top company on list **Afternoon**: Companies reject all but top applicant **Evening**: Rejected students cross off company

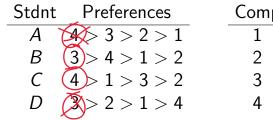
Algorithm stops once no rejections.

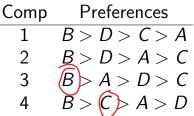
Turns out, internships always has stable matching! Prove by giving algorithm to find one

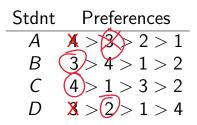
Morning: Students apply to top company on list **Afternoon**: Companies reject all but top applicant **Evening**: Rejected students cross off company

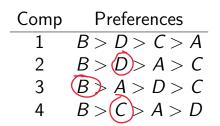
Algorithm stops once no rejections.

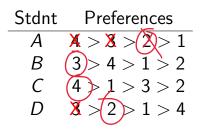
Claim: Algorithm always terminates No more than n^2 rejections possible!



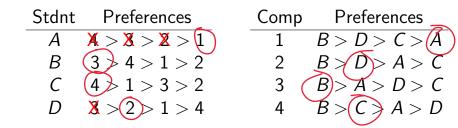


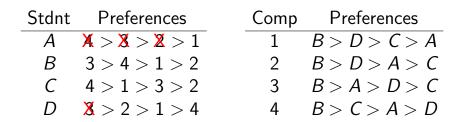






Comp	Preferences
1	B > D > C > A
2	B > D > A > C
3	B > A > D > C
4	$\overline{B} > \overline{C} > A > D$





Algorithm terminates with matching (A, 1), (B, 3), (C, 4), (D, 2)

Stable here — how do we know it always is?

Say company "interviewing" student if student applies and not yet rejected

Lemma: If S applies to C on day *k*, C interviewing S or better on every subsequent day

Say company "interviewing" student if student applies and not yet rejected

Lemma: If S applies to C on day *k*, C interviewing S or better on every subsequent day

Proof:

 Base Case: S applies on day k, so best applicant S or better

Say company "interviewing" student if student applies and not yet rejected

Lemma: If S applies to C on day *k*, C interviewing S or better on every subsequent day

Proof:

 Base Case: S applies on day k, so best applicant S or better

• Suppose interviews S' \geq S on day $j \geq k$

Say company "interviewing" student if student applies and not yet rejected

Lemma: If S applies to C on day *k*, C interviewing S or better on every subsequent day

Proof:

- Base Case: S applies on day k, so best applicant S or better
- Suppose interviews S' \geq S on day $j \geq k$
- S' applies on day j + 1, so best \geq S' \geq S

Lemma Not Cool Enough To Have Name

Lemma: Applications on last day form a pairing

- No rejections, so ≤ 1 applicant per job
- Only poss issue if student rejected everywhere!

- No rejections, so ≤ 1 applicant per job
- Only poss issue if student rejected everywhere!
- That student applied everywhere
- Improvement Lemma: comps have better stdnt

- No rejections, so ≤ 1 applicant per job
- Only poss issue if student rejected everywhere!
- That student applied everywhere
- Improvement Lemma: comps have better stdnt
- Would need more students than companies!

- No rejections, so ≤ 1 applicant per job
- Only poss issue if student rejected everywhere!
- That student applied everywhere
- Improvement Lemma: comps have better stdnt
- Would need more students than companies!

Now just have to prove no rogue couples!

Theorem: Matching at end of algo is stable

Theorem: Matching at end of algo is stable

- Proof:
 - ► Suppose have (S, C) matched, (S, C*) rogue

Theorem: Matching at end of algo is stable

- ► Suppose have (S, C) matched, (S, C*) rogue
- Def of rogue: S likes C* > C
- So in algorithm S applied to C*

Theorem: Matching at end of algo is stable

- ► Suppose have (S, C) matched, (S, C*) rogue
- Def of rogue: S likes C* > C
- ▹ So in algorithm S applied to C*
- ▶ Improvement Lemma: C* has better than S
- So C* wouldn't go rogue contradiction!

Our Final Break :'(

Time to take a break!

Two options:

- Normal discussion question
- I can show you a magic trick

Our Final Break :'(

Time to take a break!

Two options:

- Normal discussion question
- I can show you a magic trick

Today's Discussion Question:

Is a hot dog a taco?

Magic Trick

P(1) = 47P(100) = 52,611

 $5x^{+}(6x+1)$

Optimality

Is the stable pairing we get good? What is "good"?

Optimality

Is the stable pairing we get good? What is "good"?

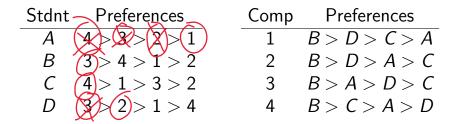
Def: Optimal company for S is best they can get *in* any stable pairing

Optimality

Is the stable pairing we get good? What is "good"?

Def: Optimal company for S is best they can get *in* any stable pairing

Not necessarily top of their list!



Theorem: Pairing from algorithm gives all students their optimal company

Theorem: Pairing from algorithm gives all students their optimal company

Proof:

- Base Case: Day 1
- Suppose S rejected by C* in favor of S'

Theorem: Pairing from algorithm gives all students their optimal company

Proof:

- Base Case: Day 1
- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in that pairing

Theorem: Pairing from algorithm gives all students their optimal company

Proof:

- Base Case: Day 1
- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in that pairing
- S' applies to C* on first day, so C* \geq C'
- C* rejects S, so S' \geq S

Theorem: Pairing from algorithm gives all students their optimal company

Proof:

- Base Case: Day 1
- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in that pairing
- S' applies to C* on first day, so C* \geq C'
- ▶ C* rejects S, so S' ≥ S
- (S', C*) rogue contradiction!

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k + 1

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k + 1

Proof:

Suppose S rejected by C* in favor of S'

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k + 1

- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in pairing; opt company C'*

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k + 1

- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in pairing; opt company C'*
- Ind Hypothesis: S' not rejected by C'*
- So for S', $C^* \ge C'^* \ge C'$
- C* rejects S, so S' \geq S

Just need (strong) inductive step: If no student rejected by opt company day k or earlier, none on day k + 1

- Suppose S rejected by C* in favor of S'
- C* opt for S, so have stable pairing $w/(S, C^*)$
- S' has company C' in pairing; opt company C'*
- Ind Hypothesis: S' not rejected by C'*
- So for S', $C^* \ge C'^* \ge C'$
- ▶ C* rejects S, so S' ≥ S
- (S', C*) rogue contradiction!

Pessimality

What is opposite of optimal?

Pessimality

What is opposite of optimal?

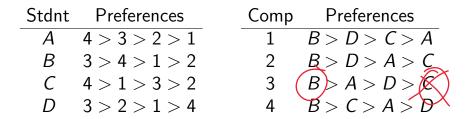
Def: Pessimal student for C is worst they get *in any stable pairing*

Pessimality

What is opposite of optimal?

Def: Pessimal student for C is worst they get *in any* stable pairing

Not necessarily bottom of their list!



Thm: Algorithm output pessimal for companies

Thm: Algorithm output pessimal for companies

- Let output pair S with C
- ▶ Suppose \exists stable pairing with (S', C), S' \leq S
- Let S work at C' in that pairing

Thm: Algorithm output pessimal for companies

- Let output pair S with C
- ▶ Suppose \exists stable pairing with (S', C), S' \leq S
- Let S work at C' in that pairing
- C optimal for S, so C' \leq C

Thm: Algorithm output pessimal for companies

- Let output pair S with C
- ▶ Suppose \exists stable pairing with (S', C), S' \leq S
- Let S work at C' in that pairing
- C optimal for S, so C' \leq C
- ▶ Then (C, S) is rogue contradiction!

Fin

Good luck on the final!

