Lecture 4: Graph Theory 1
In Which We Draw a Bunch Of Pretty Pictures

The Seven Bridges of Königsberg

Source: Wikipedia

Cross each bridge once and end where you started?

Turns out, impossible! Proved by Euler in 1736, inventing graph theory to do so.

What Is a Graph?

A graph G = (V, E) is:

- ► A set of *vertices*¹ *V*
- ▶ A set of *edges* $E \subseteq V \times V$

Visualizations:

Not the graph of a function!

Can You Give Me Directions?

Edges model relationships between vertices

Relations could be mutual (friends on Facebook)

- ightharpoonup Treat edges as unordered sets $\{u, v\}$
- ► Called *undirected* graphs

Or only one direction (follow on Twitter)

- ightharpoonup Treat edges as ordered pairs (u, v)
- ► Called *directed* graphs
- ▶ Use arrows to show direction

Focus (mainly) on undirected graphs in 70

Terminology

For an edge $e = \{u, v\}$:

- ▶ *u* and *v* are the *endpoints* of *e*
- \triangleright e is incident on u and v

For a vertex v:

- number of edges incident is the degree
- u is a neighbor (or is adjacent) if $\{u, v\} \in E$
- ightharpoonup if no neighbors, v is isolated

Paths and Cycles and Tours, Oh My!

A walk is a sequence of (connected) edges

A tour is a "closed" walk

A simple path is a walk with no repeated vertices

A cycle is a "closed" path

 $\mathsf{Cycle} \subseteq \mathsf{tour} \subseteq \mathsf{walk}; \ \mathsf{path} \subseteq \mathsf{walk}.$

¹Sometimes also known as nodes

Eulerian Tours

An Eulerian Tour is a tour using each edge once

Undirected graph is *connected* if \exists a path between any two vertices

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Only If Direction

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (only if):

- ▶ Suppose *G* has an Eulerian Tour
- Uses two edges when passing through a vertex
- ▶ So number of edges incident to *v* used is even
- ▶ But all incident edges used!
- ▶ Thus, degree of *v* is even

If Direction

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (if):

- ► Suppose all degrees are even
- ▶ Follow arbitrary edges until stuck
- ▶ All degrees even means stuck at start vertex
- ► Remove this tour, recurse on *connected components*
- "Splice" the recursive tours into the main one
- ▶ Result is Eulerian Tour of G!

/ 20

7/20

Back To Königsberg

Model Königsberg as a graph "Cross each bridge once" \equiv "Eulerian Tour"

Note: This is a *multigraph* Everywhere else, assume *simple graphs*

- No repeated edges
- No self-loops

if(tired) { break; }

Whew, that was a long proof. Time for a break.

Today's Discussion Question:

What building on campus would you get rid of?

Special Types of Graphs

Complete graphs have every possible edge

- ▶ Denote complete graph on n vertices as K_n
- K₅ has an important role next lecture!

Bipartite graphs have two halves, often denoted L, R

ightharpoonup Edges can only go between L and R

Can't See the Forest For All the Trees

A tree is a connected, acyclic graph

Equivalent definitions:

- ▶ Connected and |V| 1 edges
- ► Connected and any edge removal disconnects
- ▶ Acyclic and any edge addition creates cycle

Leaf Lemmas

A *leaf* is a vertex of degree 1

Lemma: Every tree has at least one leaf. **Proof**:

- ► Consider longest (simple) path in tree
- v is vertex at beginning
- v only connected to next vertex in path

Lemma: A tree minus a leaf is still a tree. **Proof**:

- Can't create a cycle by removing
- ▶ No path through leaf, so can't disconnect

Allows us to do induction on trees!

Definitions, Definitions

Theorem: T connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (\Longrightarrow):

- ▶ Induct on |V|. Base case easy.
- ▶ Remove a leaf and its incident edge
- ▶ By IH, result has |V| 2 edges
- ▶ So original graph had |V| 1 edges

15 / 0

Definitions, Definitions 2

Theorem: T connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (**⇐**):

- ▶ Induct on |V|. Base case easy.
- ▶ Total degree is 2|E| = 2|V| 2
- ▶ Some vertex *v* must have degree 1
- ▶ Remove *v* and its edge
- ▶ By IH, result is acyclic
- Adding v back can't create a cycle or disconnect!

A Bad Proof

Claim: Every graph with a leaf is a tree.

"Proof":

- ▶ Induct on |V|. Base case easy.
- ightharpoonup Suppose true for graphs with k vertices
- lacksquare Create graph on k+1 vertices by adding a leaf
- ▶ Doesn't create a cycle or disconnect
- ▶ So size k+1 graph also a tree!

Build Up Error

Last slide was an example of build up error

Assumed we could *build up* bigger graph from smaller graph in some specific way, but can't

Avoid using "shrink down, grow back" method

- ▶ Start with big graph, shrink to smaller
- Apply IH to small graph
- Add back what was removed

See what happens if we use this in our "proof"

16 / 20

Shrink Down, Grow Back Example

Claim: Every graph is a tree.

"Proof":

- ▶ Induct on |V|. Base case easy.
- Start with graph on k+1 vertices
- ▶ Remove a leaf to get a k vertex graph
- ...wait
- ► How do we know there's still a leaf?

We're stuck!
And should be—the theorem is false

Fin

Next time: moar graphs!