Lecture 4: Graph Theory 1 In Which We Draw a Bunch Of Pretty Pictures

The Seven Bridges of Königsberg

Source: Wikipedia

The Seven Bridges of Königsberg

Source: Wikipedia

Cross each bridge once and end where you started?

The Seven Bridges of Königsberg

Source: Wikipedia

Cross each bridge once and end where you started?

Turns out, impossible! Proved by Euler in 1736, inventing graph theory to do so.

What Is a Graph?

- A graph G = (V, E) is:
 - A set of vertices¹ V
 - A set of *edges* $E \subseteq V \times V$

¹Sometimes also known as *nodes*

What Is a Graph?

- A graph G = (V, E) is:
 - ► A set of vertices¹ V
 - A set of *edges* $E \subseteq V \times V$

Visualizations:

¹Sometimes also known as *nodes*

What Is a Graph?

- A graph G = (V, E) is:
 - A set of vertices¹ V
 - A set of *edges* $E \subseteq V \times V$

Visualizations:

Not the graph of a function!

¹Sometimes also known as *nodes*

Edges model relationships between vertices

Edges model relationships between vertices

Relations could be mutual (friends on Facebook)

- Treat edges as unordered sets $\{u, v\}$
- Called undirected graphs

Edges model relationships between vertices

Relations could be mutual (friends on Facebook)

- Treat edges as unordered sets $\{u, v\}$
- Called undirected graphs

Or only one direction (follow on Twitter)

- Treat edges as ordered pairs (u, v)
- Called *directed* graphs
- Use arrows to show direction

Edges model relationships between vertices

Relations could be mutual (friends on Facebook)

- Treat edges as unordered sets $\{u, v\}$
- Called undirected graphs

Or only one direction (follow on Twitter)

- Treat edges as ordered pairs (u, v)
- Called *directed* graphs
- Use arrows to show direction

Focus (mainly) on undirected graphs in 70

Terminology

For an edge $e = \{u, v\}$:

- *u* and *v* are the *endpoints* of *e*
- e is *incident* on u and v

Terminology

For an edge $e = \{u, v\}$:

- u and v are the endpoints of e
- e is incident on u and v

For a vertex v:

- number of edges incident is the degree
- *u* is a *neighbor* (or is *adjacent*) if $\{u, v\} \in E$
- ▶ if no neighbors, *v* is *isolated*

A walk is a sequence of (connected) edges

A *walk* is a sequence of (connected) edges A *tour* is a "closed" walk

A *walk* is a sequence of (connected) edges A *tour* is a "closed" walk A *simple path* is a walk with no repeated vertices

A *walk* is a sequence of (connected) edges A *tour* is a "closed" walk A *simple path* is a walk with no repeated vertices A *cycle* is a "closed" path

A *walk* is a sequence of (connected) edges A *tour* is a "closed" walk A *simple path* is a walk with no repeated vertices A *cycle* is a "closed" path

 $\mathsf{Cycle} \subseteq \mathsf{tour} \subseteq \mathsf{walk}; \mathsf{path} \subseteq \mathsf{walk}.$

Eulerian Tours

An Eulerian Tour is a tour using each edge once

Eulerian Tours

An *Eulerian Tour* is a tour using each edge once Undirected graph is *connected* if \exists a path between any two vertices

Eulerian Tours

An *Eulerian Tour* is a tour using each edge once Undirected graph is *connected* if \exists a path between any two vertices

Theorem: Let *G* be a connected graph. *G* has an Eulerian Tour iff every vertex has even degree.

Only If Direction

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (only if):

Suppose G has an Eulerian Tour

Only If Direction

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (only if):

- ▶ Suppose *G* has an Eulerian Tour
- Uses two edges when passing through a vertex
- ▶ So number of edges incident to *v* used is even

Only If Direction

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (only if):

- Suppose G has an Eulerian Tour
- Uses two edges when passing through a vertex
- ▶ So number of edges incident to *v* used is even
- But all incident edges used!
- ▶ Thus, degree of *v* is even

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (if):

Suppose all degrees are even

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (if):

- Suppose all degrees are even
- Follow arbitrary edges until stuck
- All degrees even means stuck at start vertex

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (if):

- Suppose all degrees are even
- Follow arbitrary edges until stuck
- All degrees even means stuck at start vertex
- Remove this tour, recurse on *connected* components

Theorem: Let G be a connected graph. G has an Eulerian Tour iff every vertex has even degree.

Proof (if):

- Suppose all degrees are even
- Follow arbitrary edges until stuck
- All degrees even means stuck at start vertex
- Remove this tour, recurse on *connected components*
- "Splice" the recursive tours into the main one
- ▶ Result is Eulerian Tour of *G*!

Back To Königsberg

Back To Königsberg

Model Königsberg as a graph "Cross each bridge once" \equiv "Eulerian Tour"

Back To Königsberg

Model Königsberg as a graph "Cross each bridge once" \equiv "Eulerian Tour"

Note: This is a *multigraph* Everywhere else, assume *simple graphs*

- No repeated edges
- No self-loops

if(tired) { break; }

Whew, that was a long proof. Time for a break.

if(tired) { break; }

Whew, that was a long proof. Time for a break.

Today's Discussion Question:

What building on campus would you get rid of?

Special Types of Graphs

Complete graphs have every possible edge

- Denote complete graph on n vertices as K_n
- K_5 has an important role next lecture!

Special Types of Graphs

Complete graphs have every possible edge

- Denote complete graph on n vertices as K_n
- ► *K*₅ has an important role next lecture!

Bipartite graphs have two halves, often denoted L, R

• Edges can only go between L and R

Special Types of Graphs

Complete graphs have every possible edge

- Denote complete graph on n vertices as K_n
- K_5 has an important role next lecture!

Bipartite graphs have two halves, often denoted L, R

• Edges can only go between L and R

Can't See the Forest For All the Trees

A tree is a connected, acyclic graph

Can't See the Forest For All the Trees

A tree is a connected, acyclic graph

Equivalent definitions:

- Connected and |V| 1 edges
- Connected and any edge removal disconnects
- Acyclic and any edge addition creates cycle

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf.

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf. **Proof:**

- Consider longest (simple) path in tree
- v is vertex at beginning

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf. **Proof:**

- Consider longest (simple) path in tree
- v is vertex at beginning
- v only connected to next vertex in path

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf. **Proof:**

- Consider longest (simple) path in tree
- v is vertex at beginning
- v only connected to next vertex in path

Lemma: A tree minus a leaf is still a tree.

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf. **Proof:**

- Consider longest (simple) path in tree
- v is vertex at beginning
- v only connected to next vertex in path

Lemma: A tree minus a leaf is still a tree. **Proof**:

- Can't create a cycle by removing
- No path through leaf, so can't disconnect

A *leaf* is a vertex of degree 1 **Lemma**: Every tree has at least one leaf. **Proof:**

- Consider longest (simple) path in tree
- v is vertex at beginning
- v only connected to next vertex in path

Lemma: A tree minus a leaf is still a tree. **Proof**:

- Can't create a cycle by removing
- No path through leaf, so can't disconnect

Allows us to do induction on trees!

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (\implies):

▶ Induct on |V|. Base case easy.

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (\implies):

- Induct on |V|. Base case easy.
- Remove a leaf and its incident edge

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (\implies):

- Induct on |V|. Base case easy.
- Remove a leaf and its incident edge
- By IH, result has |V| 2 edges
- So original graph had |V| 1 edges

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (\Leftarrow):

▶ Induct on |V|. Base case easy.

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (⇐):

- Induct on |V|. Base case easy.
- Total degree is 2|E| = 2|V| 2
- ▶ Some vertex *v* must have degree 1

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (⇐):

- Induct on |V|. Base case easy.
- Total degree is 2|E| = 2|V| 2
- Some vertex v must have degree 1
- Remove v and its edge

Theorem: *T* connected and acyclic $\iff T$ connected and has |V| - 1 edges

Proof (⇐=):

- Induct on |V|. Base case easy.
- Total degree is 2|E| = 2|V| 2
- Some vertex v must have degree 1
- Remove v and its edge
- By IH, result is acyclic
- Adding v back can't create a cycle or disconnect!

Claim: Every graph with a leaf is a tree.

Claim: Every graph with a leaf is a tree.

"Proof":

• Induct on |V|. Base case easy.

Claim: Every graph with a leaf is a tree.

- Induct on |V|. Base case easy.
- Suppose true for graphs with k vertices
- Create graph on k+1 vertices by adding a leaf

Claim: Every graph with a leaf is a tree.

- Induct on |V|. Base case easy.
- Suppose true for graphs with k vertices
- Create graph on k+1 vertices by adding a leaf
- Doesn't create a cycle or disconnect
- So size k + 1 graph also a tree!

Claim: Every graph with a leaf is a tree.

- Induct on |V|. Base case easy.
- Suppose true for graphs with k vertices
- Create graph on k+1 vertices by adding a leaf
- Doesn't create a cycle or disconnect
- So size k + 1 graph also a tree!

Last slide was an example of build up error

Last slide was an example of *build up error*

Assumed we could *build up* bigger graph from smaller graph in some specific way, but can't

Last slide was an example of *build up error*

Assumed we could *build up* bigger graph from smaller graph in some specific way, but can't

Avoid using "shrink down, grow back" method

- Start with big graph, shrink to smaller
- Apply IH to small graph
- Add back what was removed

Last slide was an example of *build up error*

Assumed we could *build up* bigger graph from smaller graph in some specific way, but can't

Avoid using "shrink down, grow back" method

- Start with big graph, shrink to smaller
- Apply IH to small graph
- Add back what was removed

See what happens if we use this in our "proof"

Claim: Every graph is a tree.

"Proof":

• Induct on |V|. Base case easy.

Claim: Every graph is a tree.

- Induct on |V|. Base case easy.
- Start with graph on k+1 vertices
- Remove a leaf to get a k vertex graph

Claim: Every graph is a tree.

- Induct on |V|. Base case easy.
- Start with graph on k+1 vertices
- Remove a leaf to get a k vertex graph
- ...wait

Claim: Every graph is a tree.

- Induct on |V|. Base case easy.
- Start with graph on k+1 vertices
- Remove a leaf to get a k vertex graph
- ...wait
- How do we know there's still a leaf?

Claim: Every graph is a tree.

"Proof":

- Induct on |V|. Base case easy.
- Start with graph on k+1 vertices
- Remove a leaf to get a k vertex graph
- ...wait
- How do we know there's still a leaf?

We're stuck!

And should be-the theorem is false

Fin

Next time: moar graphs!