
Lecture 4: Graph Theory 1
In Which We Draw a Bunch Of Pretty Pictures
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The Seven Bridges of Königsberg

Source: Wikipedia

Cross each bridge once and end where you started?
Turns out, impossible! Proved by Euler in 1736,
inventing graph theory to do so.
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What Is a Graph?
A graph G = (V,E) is:

▶ A set of vertices1 V
▶ A set of edges E ⊆ V × V

Visualizations:

Not the graph of a function!

1Sometimes also known as nodes
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Can You Give Me Directions?
Edges model relationships between vertices

Relations could be mutual (friends on Facebook)
▶ Treat edges as unordered sets {u, v}
▶ Called undirected graphs

Or only one direction (follow on Twitter)
▶ Treat edges as ordered pairs (u, v)
▶ Called directed graphs
▶ Use arrows to show direction

Focus (mainly) on undirected graphs in 70
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Terminology
For an edge e = {u, v}:

▶ u and v are the endpoints of e
▶ e is incident on u and v

For a vertex v:
▶ number of edges incident is the degree
▶ u is a neighbor (or is adjacent) if {u, v} ∈ E
▶ if no neighbors, v is isolated
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Paths and Cycles and Tours, Oh My!

A

B C

D

A walk is a sequence of (connected) edges
A tour is a “closed” walk
A simple path is a walk with no repeated vertices
A cycle is a “closed” path
Cycle ⊆ tour ⊆ walk; path ⊆ walk.
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Eulerian Tours
An Eulerian Tour is a tour using each edge once

Undirected graph is connected if ∃ a path between
any two vertices
Theorem: Let G be a connected graph. G has an
Eulerian Tour iff every vertex has even degree.
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Only If Direction
Theorem: Let G be a connected graph. G has an
Eulerian Tour iff every vertex has even degree.
Proof (only if):

▶ Suppose G has an Eulerian Tour

▶ Uses two edges when passing through a vertex
▶ So number of edges incident to v used is even
▶ But all incident edges used!
▶ Thus, degree of v is even
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If Direction
Theorem: Let G be a connected graph. G has an
Eulerian Tour iff every vertex has even degree.
Proof (if):

▶ Suppose all degrees are even

▶ Follow arbitrary edges until stuck
▶ All degrees even means stuck at start vertex
▶ Remove this tour, recurse on connected

components
▶ “Splice” the recursive tours into the main one
▶ Result is Eulerian Tour of G!
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Back To Königsberg

≡ A
B

C
D

Model Königsberg as a graph
“Cross each bridge once” ≡ “Eulerian Tour”
Note: This is a multigraph
Everywhere else, assume simple graphs

▶ No repeated edges
▶ No self-loops
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if(tired) { break; }
Whew, that was a long proof. Time for a break.

Today’s Discussion Question:
What building on campus would you get rid of?
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Special Types of Graphs
Complete graphs have every possible edge

▶ Denote complete graph on n vertices as Kn
▶ K5 has an important role next lecture!

Bipartite graphs have two halves, often denoted L, R
▶ Edges can only go between L and R
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Can’t See the Forest For All the Trees
A tree is a connected, acyclic graph

Equivalent definitions:
▶ Connected and |V| − 1 edges
▶ Connected and any edge removal disconnects
▶ Acyclic and any edge addition creates cycle
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Leaf Lemmas
A leaf is a vertex of degree 1
Lemma: Every tree has at least one leaf.

Proof:
▶ Consider longest (simple) path in tree
▶ v is vertex at beginning
▶ v only connected to next vertex in path

Lemma: A tree minus a leaf is still a tree.
Proof:

▶ Can’t create a cycle by removing
▶ No path through leaf, so can’t disconnect

Allows us to do induction on trees!
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Definitions, Definitions
Theorem: T connected and acyclic ⇐⇒ T
connected and has |V| − 1 edges

Proof ( =⇒ ):
▶ Induct on |V|. Base case easy.
▶ Remove a leaf and its incident edge
▶ By IH, result has |V| − 2 edges
▶ So original graph had |V| − 1 edges
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Definitions, Definitions 2
Theorem: T connected and acyclic ⇐⇒ T
connected and has |V| − 1 edges
Proof ( ⇐= ):

▶ Induct on |V|. Base case easy.

▶ Total degree is 2|E| = 2|V| − 2
▶ Some vertex v must have degree 1
▶ Remove v and its edge
▶ By IH, result is acyclic
▶ Adding v back can’t create a cycle or

disconnect!
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A Bad Proof
Claim: Every graph with a leaf is a tree.

“Proof”:
▶ Induct on |V|. Base case easy.
▶ Suppose true for graphs with k vertices
▶ Create graph on k + 1 vertices by adding a leaf
▶ Doesn’t create a cycle or disconnect
▶ So size k + 1 graph also a tree!

A

B
C D
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Build Up Error
Last slide was an example of build up error

Assumed we could build up bigger graph from
smaller graph in some specific way, but can’t
Avoid using “shrink down, grow back” method

▶ Start with big graph, shrink to smaller
▶ Apply IH to small graph
▶ Add back what was removed

See what happens if we use this in our “proof”
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Shrink Down, Grow Back Example
Claim: Every graph is a tree.
“Proof”:

▶ Induct on |V|. Base case easy.

▶ Start with graph on k + 1 vertices
▶ Remove a leaf to get a k vertex graph
▶ ...wait
▶ How do we know there’s still a leaf?

We’re stuck!
And should be–the theorem is false
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Fin
Next time: moar graphs!
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