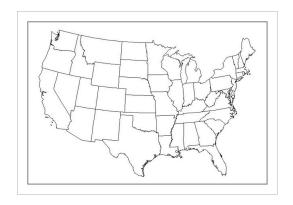
Lecture 5: Graph Theory 2 Snakes On a Planar Graph

Coloring a Map

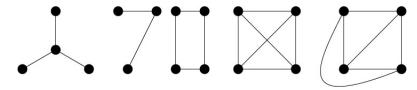
How many colors required for this map?



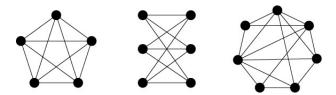
Planar Graphs

Graph is *planar* if can be drawn w/o edge crossings

Examples:



Not Examples:

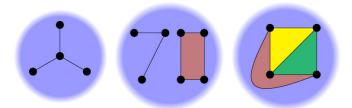


But Whhhhyyyyyy???

Why do we care about planar graphs?

Face(book)

A face is connected region of plane

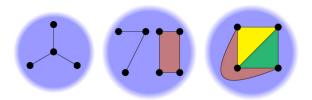


Claim: Conn. graph has one face \iff is a tree

Intuition: have interior face \iff have cycle

The Return Of the Euler

Theorem: For a conn. planar graph, v + f = e + 2. Let's verify this on example graphs



1st one: v = 4, e = 3, f = 1 2nd one, first half: v = 3, e = 2, f = 1 2nd one, second half: v = 4, e = 4, f = 2 3rd one: v = 4, e = 6, f = 4

¹This is known as Euler's formula

Proof Of Euler

Theorem: For a conn. planar graph, v + f = e + 2.

- By induction on f
- ▶ Base Case (f = 1): tree, so e = v 1Thus e + 2 = v + 1 = v + f
- Suppose true for k faces
- For k + 1, remove edge between two faces
- *k* faces, so v + k = (e 1) + 2
- Add 1 to both sides: v + f = e + 2

Sparsity

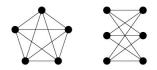
Euler: planar graphs have few edges.

Theorem: For conn. planar graph, $e \le 3v - 6$.

- ▶ Each edge has 2 "sides" (s = 2e)
- ▶ Each face has ≥ 3 "sides" ($s \geq 3f$)
- ▶ Thus, $2e \ge 3f$, so $f \le \frac{2}{3}e$
- Euler: v + f = e + 2
- Plug in for f: $v + \frac{2}{3}e \ge e + 2$
- ► Thus $\frac{1}{3}e + 2 \le v$, so $e \le 3v 6$

Non-Planarity

Claim: K_5 and $K_{3,3}$ are non-planar.



For
$$K_5$$
, $e = 10$, but $3v - 6 = 3(5) - 6 = 9!$

 $K_{3,3}$ has e = 9 and 3v - 6 = 3(6) - 6 = 12Not enough information to prove for $K_{3,3}$ yet!

Bipartite Planarity

Theorem: Bipartite planar graph has $e \le 2v - 4$.

- As before, edges have two sides (s = 2e)
- ▶ Bipartite means no triangles! So $s \ge 4f$
- ► Hence $2e \ge 4f$, so $f \le \frac{1}{2}e$
- ▶ Plug into Euler's: $v + \frac{1}{2}e \ge e + 2$
- ► Thus $\frac{1}{2}e + 2 \le v$, so $e \le 2v 4$

For
$$K_{3,3}$$
, $2v - 4 = 2(6) - 4 = 8$
9 edges means non-planar!

Why K_5 and $K_{3,3}$?

Kuratowski's Theorem: A graph is non-planar iff it "contains" K_5 or $K_{3,3}$.

Full meaning of "contains" beyond our scope Less general: non-planar if has exact copy

What Were We Talking About Again?

Back to coloring!

Theorem: Any planar graph can be 6-colored.

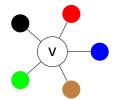
To prove, need following lemma: Every planar graph has a degree \leq 5 vertex.

- ▶ Previously: $e \le 3v 6$
- ▶ Total degree is $2e \le 6v 12$
- ▶ Thus average degree is $\leq \frac{6v-12}{v} < 6$
- Not every vertex above average!

6-Color Theorem

Theorem: Any planar graph can be 6-colored.

- ▶ By induction on |V|
- ▶ Base Case (|V| = 1): only need 1 color...
- ▶ Suppose true for graphs on *k* vertices
- ▶ Take G on k+1 vertices
- ▶ Remove v st $deg(v) \le 5$, 6-color result
- \triangleright v has \leq 5 neighbors, so color available!



Zzzzzzzz...

Break time-be social!

Today's Discussion Question:

What vegetable or fruit would you be and why?

5-Color Theorem

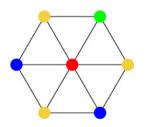
Theorem: Any planar graph can be 5-colored.

- Same idea as 6-color theorem
- ▶ Remove deg ≤ 5 vertex, color, add back
- ▶ If deg \leq 4, color remaining, so fine
- If two neighbors same color, again fine
- Problem if all 5 neighbors have different color
- Need to modify original coloring to fix!

Missed Connections

Will consider color connected components²

Idea: remove all verts not colored c_1 or c_2 from G For vertex v colored c_1 or c_2 , $CCC(G, v, c_1, c_2)$ is connected component in result that contains v

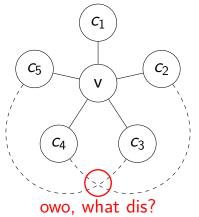


Claim: can reverse colors in any CCC and be fine

²This is totally not a term I just made up *looks around shiftily*

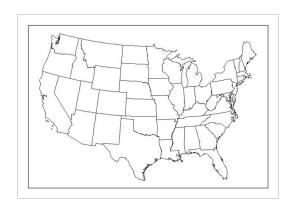
Back To 5-Coloring

Fix a planar drawing and recursive coloring:



Try to change c_5 to c_3 Try to change c_4 to c_2

Bringing It Back



This map can be colored with 5 colors!

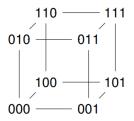
In fact, is a 4-color theorem as well. Computer aided proof, not yet human readable.

Hypercubes

One more special type of graph: hypercubes!

Intuition: few edges, but "hard" to cut in half Good design for communication network!

Formal definition: *n*-dimensional hypercube has vertex for each length-*n* bitstring Edge between vertices iff they differ in one bit

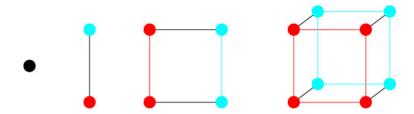


A Recursive Definition

Alernately define hypercubes by recursion:

0-dimensional hypercube is single vertex

(n+1)-dim hypercube is two copies of n-dim Corresponding vertices connected by edges



What Does That Even Mean?

Claim: hypercube is "hard" to cut in half. What does this mean, formally?

Theorem: To separate hypercube into sets S_1 and S_2 , need to cut $\geq \min(|S_1|, |S_2|)$ edges.

Intuition: maybe easy to cut off a few vertices, hard to cut off a lot.

Proof in notes if you're interested;)

Fin

Next time: modular arithmetic!