Lecture 6: Modular Arithmetic 1

Because Sometimes You Just Want 2 + 2 = 1

Arithmetic For Days

It is currently Tuesday.
What day is it in 100 days?

7 days from now: Tuesday 14 days from now: Tuesday 21 days from now: Tuesday

. . .

98 days from now: Tuesday 99 days from now: Wednesday 100 days from now: Thursday!

Phew! There must be a better way...

Week By Week

100 days is 14 weeks and 2 days

Moving 1 week doesn't change day of the week!

So 100 days "equivalent" to 2 days! 2 days from now is Thursday.

What day of the week is it in 2^{100} days?

. . .

Need more general framework to work with this

Modular Arithmetic

Normally define arithmetic on \mathbb{Z} or \mathbb{R} Now define + and \cdot on $\mathbb{Z}_m := \{0,1,2,...,m-1\}$

Idea: do + or \cdot as normal, shrink down if too big

Ex: for m = 5, $3 + 3 = 6 \rightarrow 1$; $3 \cdot 4 = 12 \rightarrow 2$

What about subtraction?

Really just adding inverses — same idea!

Ex: for
$$m = 5$$
, $2 - 4 = 2 + (-4) = -2 \rightarrow 3$

What about division?

More complicated...deal with it later

A Quotient View

Say
$$x \equiv y \pmod{m}$$
 if $x = y + km$ for $k \in \mathbb{Z}$

Idea: treat such x and y as "the same" So for m=5, $\{...,-8,-3,2,7,...\}$ all "the same"

 $+\ {\sf and}\ \cdot\ {\sf now}\ {\sf work}\ {\sf as}\ {\sf normal}$ Doesn't matter what "representative" used

So for m = 5, $42 \cdot 9001$ "same as" $2 \cdot 1 = 1$.

More complicated:

$$(100+15) \cdot 6 \equiv (0+3) \cdot 2 \equiv 6 \equiv 2 \pmod{4}$$

Well-Defined

Theorem: If $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$, then $a + b \equiv c + d \pmod{m}$.

Proof:

- ▶ By givens, a = c + km and $b = d + \ell m$
- So $a + b = c + d + (k + \ell)m$
- ▶ Thus $a + b \equiv c + d \pmod{m}$

Can prove similar statement for ·

Many Days From Now...

Ask now: what day of the week in 2^{100} days?

Need to know 2^{100} (mod 7)

Notice:
$$2^3 = 8 \equiv 1 \pmod{7}$$

So $2^{100} = 2^{99} \cdot 2 = 8^{33} \cdot 2 \equiv 1^{33} \cdot 2 \equiv 2 \pmod{7}$

So Thursday again in 2¹⁰⁰ days!

How to do this in general? Algorithm?

Naïve Approach

```
Inputs: x, y, m \in \mathbb{N} \ (x, m \neq 0)
Goal Output: x^y \pmod{m}
Algorithm:
counter, result = 0, 1
while counter < y:
     result = result * x (mod m)
     counter += 1
return result
Issue: for applications, y could be 1000+ bits
So could require \approx 2^{1000} iterations
77777
```

Recursive Approach

```
Idea: If y = 2k, x^y = x^{2k} = (x^k)^2
If y = 2k + 1, x^y = x^{2k+1} = (x^k)^2 \cdot x
If can calculate x^k, rest is easy!
Algorithm:
mod-exp(x, y, m):
    if y = 0: return 1
    if y even:
         z = mod-exp(x, y/2, m)
         return z * z \pmod{m}
     if y odd:
         z = mod-exp(x, (y - 1)/2, m)
         return z * z * x \pmod{m}
```

Iterative Approach

Alternate approach that may be easier by hand

Idea: decompose y into sum of powers of 2

Ex: 13 is 1101 in binary, so $13 = 2^3 + 2^2 + 2^0$

Note: $(x^{2^i})^2 = x^{2^{i} \cdot 2} = x^{2^{i+1}}$

So can calculate x raised to powers of two

Algorithm:

- ▶ Calculate x^{2^i} (mod m) for i up to $\lfloor \log_2(y) \rfloor$
- Multiply those in decomp of y

This is known as the *method of repeated squares*

Repeated Squares Example

```
Want to calculate 4<sup>21</sup> (mod 11)
4^1 \equiv 4 \pmod{11}
4^2 \equiv 16 \equiv 5 \pmod{11}
4^4 \equiv 5^2 \equiv 25 \equiv 3 \pmod{11}
4^8 \equiv 3^2 \equiv 9 \pmod{11}
4^{16} \equiv 9^2 \equiv 81 \equiv 4 \pmod{11}
21 = 16 + 4 + 1, so 4^{21} = 4^{16} \cdot 4^4 \cdot 4^1
Thus, 4^{21} \equiv 4 \cdot 3 \cdot 4 \equiv 48 \equiv 4 \pmod{11}
```

Move Fast And Break Things

Time for a breather! Talk to your neighbors :)

Today's Discussion Question:

If you could have an unlimited storage of one thing, what would it be and why?

Inverses

Return to the problem of division!

In \mathbb{R} , $x \div 2$ really just $x \cdot \frac{1}{2}$ What is $\frac{1}{2}$? Number such that $2 \cdot \frac{1}{2} = 1$!

To do division, need multiplicative inverses Mult inverse of $x \mod m$ is a st $ax \equiv 1 \pmod m$

Claim: If inverse exists, is unique

Proof:

- Suppose have two inverses a and b
- $ightharpoonup a \equiv a \cdot 1 \equiv a \cdot (bx) \pmod{m}$
- $b \equiv b \cdot 1 \equiv b \cdot (ax) \pmod{m}$
- ▶ Multiplication commutes, so $a \equiv b \pmod{m}$

When Are There Inverses?

Theorem: x has an inverse mod m iff gcd(x, m) = 1

Proof (only if):

- Proceed by contraposition
- ▶ Suppose gcd(x, m) = d > 1
- For any a, d|ax as d|x
- For any k, d|km as d|m
- Since d > 1, d / (km + 1)
- ▶ Hence $ax \neq km + 1$ for any a, k
- ▶ So $ax \not\equiv 1 \pmod{m}$ for any a

When Are There Inverses? 2

Theorem: x has an inverse mod m iff gcd(x, m) = 1

Proof (if):

- Suppose gcd(x, m) = 1
- ► Consider sequence 0x, 1x, 2x, ..., (m-1)x
- Claim: these are all distinct mod m
 - If $ax \equiv bx \pmod{m}$, m|((a-b)x)
 - gcd(x, m) = 1, so m|(a b)
- m distinct values mod m, so 1 in there!

Calculating GCD

Theorem: For y > 0, $gcd(x, y) = gcd(y, x \mod y)$. Equiv: d divides x and y iff divides y and $x \mod y$

Proof (only if):

- ▶ Suppose d|x and d|y, so x = kd and $y = \ell d$
- $\blacktriangleright x \mod y = x qy = d(k q\ell)$, so $d|(x \mod y)$

Proof (if):

- ▶ Suppose $x \mod y = jd$ and $y = \ell d$

```
gcd(x, y):
   if y = 0: return x
   else: return gcd(y, x mod y)
```

Example Calculations

```
Want gcd(126, 70)
= \gcd(70, 126 \mod 70 = 56)
= \gcd(56, 70 \mod 56 = 14)
= \gcd(14, 56 \mod 14 = 0)
= 14
Want gcd(70, 61)
= \gcd(61, 70 \mod 61 = 9)
= \gcd(9, 61 \mod 9 = 7)
= \gcd(7, 9 \mod 7 = 2)
= \gcd(2, 7 \mod 2 = 1)
= \gcd(1, 2 \mod 1 = 0)
= 1
```

Finding Inverses

Knowing GCD good, but would like inverses as well Brute-force search possible, but slow

Suppose have
$$a, b$$
 st $ax + by = \gcd(x, y)$
If $\gcd = 1$, $a = x^{-1} \pmod{y}$ and $b = y^{-1} \pmod{x}$!
Why? Have $ax \equiv ax + by \equiv 1 \pmod{y}$
How to find?

Idea: suppose have a', b' st $a'y + b'(x \mod y) = \gcd x \mod y = x - \lfloor \frac{x}{y} \rfloor y$ Thus god $a'x + b'(x + \frac{x}{y} + y) = b'x + (a' + \frac{x}{y} + b')$

Thus,
$$gcd = a'y + b'(x - \lfloor \frac{x}{y} \rfloor y) = b'x + (a' - \lfloor \frac{x}{y} \rfloor b')y$$

Extended Euclid's Algorithm

```
Leads to natural extension to Euclid's Algorithm:
\operatorname{egcd}(x, y) returns (d, a, b) st \operatorname{gcd} = d = ax + by
egcd(x, y):
     if y = 0: return (x, 1, 0)
     else:
           (d, a', b') = \operatorname{egcd}(y, x \operatorname{mod} y)
           a = b'
           b = a' - (x//y) * b'
           return (d, a, b)
```

EGCD Example Calculation

If
$$d = a'y + b'(x \mod y)$$
, $d = b'x + (a' - \lfloor \frac{x}{y} \rfloor b')y$
egcd(127, 70) $(1, -27, 22 - (\lfloor \frac{127}{70} \rfloor \cdot -27) = 49)$
egcd(70, 57) $(1, 22, -5 - (\lfloor \frac{70}{57} \rfloor \cdot 22) = -27)$
egcd(57, 13) $(1, -5, 2 - (\lfloor \frac{57}{13} \rfloor \cdot -5) = 22)$
egcd(13, 5) $(1, 2, -1 - (\lfloor \frac{13}{5} \rfloor \cdot 2) = -5)$
egcd(5, 3) $(1, -1, 1 - (\lfloor \frac{5}{3} \rfloor \cdot -1) = 2)$
egcd(3, 2) $(1, 1, 0 - (\lfloor \frac{3}{2} \rfloor \cdot 1) = -1)$
egcd(2, 1) $(1, 0, 1 - (\lfloor \frac{2}{1} \rfloor \cdot 0) = 1)$
egcd(1, 0) $(1, 1, 0)$

So
$$gcd(127,70) = 1 = (-27 \cdot 127) + (49 \cdot 70)$$

Fin

Next time: yet more modular arithmetic!