
Lecture 6: Modular Arithmetic 1
Because Sometimes You Just Want 2 + 2 = 1

1 / 21

Arithmetic For Days
It is currently Tuesday.
What day is it in 100 days?
7 days from now: Tuesday
14 days from now: Tuesday
21 days from now: Tuesday
...
98 days from now: Tuesday
99 days from now: Wednesday
100 days from now: Thursday!
Phew! There must be a better way...

2 / 21

Week By Week
100 days is 14 weeks and 2 days
Moving 1 week doesn’t change day of the week!
So 100 days “equivalent” to 2 days!
2 days from now is Thursday.
What day of the week is it in 2100 days?
...
Need more general framework to work with this

3 / 21

Modular Arithmetic
Normally define arithmetic on Z or R
Now define + and · on Zm := {0, 1, 2, ...,m − 1}
Idea: do + or · as normal, shrink down if too big
Ex: for m = 5, 3 + 3 = 6 → 1; 3 · 4 = 12 → 2
What about subtraction?
Really just adding inverses — same idea!
Ex: for m = 5, 2 − 4 = 2 + (−4) = −2 → 3
What about division?
More complicated...deal with it later

4 / 21

A Quotient View
Say x ≡ y (mod m) if x = y + km for k ∈ Z

Idea: treat such x and y as “the same”
So for m = 5, {...,−8,−3, 2, 7, ...} all “the same”
+ and · now work as normal
Doesn’t matter what “representative” used
So for m = 5, 42 · 9001 “same as” 2 · 1 = 1.
More complicated:

(100 + 15) · 6 ≡ (0 + 3) · 2 ≡ 6 ≡ 2 (mod 4)

5 / 21

Well-Defined
Theorem: If a ≡ c (mod m) and b ≡ d (mod m),
then a + b ≡ c + d (mod m).
Proof:

▶ By givens, a = c + km and b = d + ℓm
▶ So a + b = c + d + (k + ℓ)m
▶ Thus a + b ≡ c + d (mod m)

Can prove similar statement for ·

6 / 21

Many Days From Now...
Ask now: what day of the week in 2100 days?
Need to know 2100 (mod 7)
Notice: 23 = 8 ≡ 1 (mod 7)
So 2100 = 299 · 2 = 833 · 2 ≡ 133 · 2 ≡ 2 (mod 7)
So Thursday again in 2100 days!
How to do this in general? Algorithm?

7 / 21

Naïve Approach
Inputs: x, y,m ∈ N (x,m ̸= 0)
Goal Output: xy (mod m)

Algorithm:
counter, result = 0, 1
while counter ≤ y:

result = result * x (mod m)
counter += 1

return result

Issue: for applications, y could be 1000+ bits
So could require ≈ 21000 iterations
Zzzzz....

8 / 21

Recursive Approach
Idea: If y = 2k, xy = x2k = (xk)2

If y = 2k + 1, xy = x2k+1 = (xk)2 · x
If can calculate xk, rest is easy!
Algorithm:
mod-exp(x, y, m):

if y = 0: return 1
if y even:

z = mod-exp(x, y/2, m)
return z * z (mod m)

if y odd:
z = mod-exp(x, (y - 1)/2, m)
return z * z * x (mod m)

9 / 21

Iterative Approach
Alternate approach that may be easier by hand
Idea: decompose y into sum of powers of 2
Ex: 13 is 1101 in binary, so 13 = 23 + 22 + 20

Note: (x2i
)2 = x2i·2 = x2i+1

So can calculate x raised to powers of two
Algorithm:

▶ Calculate x2i
(mod m) for i up to ⌊log2(y)⌋

▶ Multiply those in decomp of y

This is known as the method of repeated squares

10 / 21

Repeated Squares Example
Want to calculate 421 (mod 11)
41 ≡ 4 (mod 11)
42 ≡ 16 ≡ 5 (mod 11)
44 ≡ 52 ≡ 25 ≡ 3 (mod 11)
48 ≡ 32 ≡ 9 (mod 11)
416 ≡ 92 ≡ 81 ≡ 4 (mod 11)
21 = 16 + 4 + 1, so 421 = 416 · 44 · 41

Thus, 421 ≡ 4 · 3 · 4 ≡ 48 ≡ 4 (mod 11)

11 / 21

Move Fast And Break Things
Time for a breather! Talk to your neighbors :)
Today’s Discussion Question:
If you could have an unlimited storage of one thing,
what would it be and why?

12 / 21

Inverses
Return to the problem of division!
In R, x ÷ 2 really just x · 1

2
What is 1

2? Number such that 2 · 1
2 = 1!

To do division, need multiplicative inverses
Mult inverse of x mod m is a st ax ≡ 1 (mod m)

Claim: If inverse exists, is unique
Proof:

▶ Suppose have two inverses a and b
▶ a ≡ a · 1 ≡ a · (bx) (mod m)
▶ b ≡ b · 1 ≡ b · (ax) (mod m)
▶ Multiplication commutes, so a ≡ b (mod m)

13 / 21

When Are There Inverses?
Theorem: x has an inverse mod m iff gcd(x,m) = 1
Proof (only if):

▶ Proceed by contraposition
▶ Suppose gcd(x,m) = d > 1
▶ For any a, d|ax as d|x
▶ For any k, d|km as d|m
▶ Since d > 1, d ̸ |(km + 1)
▶ Hence ax ̸= km + 1 for any a, k
▶ So ax ̸≡ 1 (mod m) for any a

14 / 21

When Are There Inverses? 2
Theorem: x has an inverse mod m iff gcd(x,m) = 1
Proof (if):

▶ Suppose gcd(x,m) = 1
▶ Consider sequence 0x, 1x, 2x, ..., (m − 1)x
▶ Claim: these are all distinct mod m

▶ If ax ≡ bx (mod m), m|((a − b)x)
▶ gcd(x,m) = 1, so m|(a − b)

▶ m distinct values mod m, so 1 in there!

15 / 21

Calculating GCD
Theorem: For y > 0, gcd(x, y) = gcd(y, x mod y).
Equiv: d divides x and y iff divides y and x mod y
Proof (only if):

▶ Suppose d|x and d|y, so x = kd and y = ℓd
▶ x mod y = x − qy = d(k − qℓ), so d|(x mod y)

Proof (if):
▶ Suppose x mod y = jd and y = ℓd
▶ x = (x mod y) + qy = d(j + ℓq)

gcd(x, y):
if y = 0: return x
else: return gcd(y, x mod y)

16 / 21

Example Calculations
Want gcd(126, 70)
= gcd(70, 126 mod 70 = 56)
= gcd(56, 70 mod 56 = 14)
= gcd(14, 56 mod 14 = 0)
= 14
Want gcd(70, 61)
= gcd(61, 70 mod 61 = 9)
= gcd(9, 61 mod 9 = 7)
= gcd(7, 9 mod 7 = 2)
= gcd(2, 7 mod 2 = 1)
= gcd(1, 2 mod 1 = 0)
= 1

17 / 21

Finding Inverses
Knowing GCD good, but would like inverses as well
Brute-force search possible, but slow
Suppose have a, b st ax + by = gcd(x, y)
If gcd = 1, a = x−1 (mod y) and b = y−1 (mod x)!
Why? Have ax ≡ ax + by ≡ 1 (mod y)
How to find?
Idea: suppose have a′, b′ st a′y + b′(x mod y) = gcd
x mod y = x − ⌊x

y⌋y
Thus, gcd = a′y+ b′(x− ⌊x

y⌋y) = b′x+ (a′ − ⌊x
y⌋b′)y

18 / 21

Extended Euclid’s Algorithm
Leads to natural extension to Euclid’s Algorithm:
egcd(x, y) returns (d, a, b) st gcd = d = ax + by
egcd(x, y):

if y = 0: return (x, 1, 0)
else:

(d, a', b') = egcd(y, x mod y)
a = b'
b = a' - (x//y) * b'
return (d, a, b)

19 / 21

EGCD Example Calculation
If d = a′y + b′(x mod y), d = b′x + (a′ − ⌊x

y⌋b′)y

egcd(127, 70) (1,−27, 22 − (⌊127
70 ⌋ · −27) = 49)

egcd(70, 57) (1, 22,−5 − (⌊70
57⌋ · 22) = −27)

egcd(57, 13) (1,−5, 2 − (⌊57
13⌋ · −5) = 22)

egcd(13, 5) (1, 2,−1 − (⌊13
5 ⌋ · 2) = −5)

egcd(5, 3) (1,−1, 1 − (⌊5
3⌋ · −1) = 2)

egcd(3, 2) (1, 1, 0 − (⌊3
2⌋ · 1) = −1)

egcd(2, 1) (1, 0, 1 − (⌊2
1⌋ · 0) = 1)

egcd(1, 0) (1, 1, 0)
So gcd(127, 70) = 1 = (−27 · 127) + (49 · 70)

20 / 21

Fin
Next time: yet more modular arithmetic!

21 / 21

