Lecture 7: Modular Arithmetic 2

Yo Dawg I Heard You Like Modular Arithmetic

A Remainder Problem

I want to buy cookies for lecture. Box A costs \$7, Box B costs \$10.

Buy only box A: \$4 left over Buy only box B: use up all my money How much money did I start with?

Mathematically: find x such that

 $x \equiv 4 \pmod{7}$ $x \equiv 0 \pmod{10}$

Remainder Solution

Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution? idk...let's try finding one!

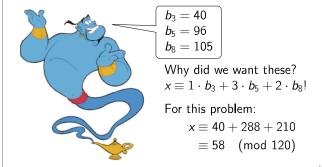
List all positive x such that $x \equiv 4 \pmod{7}$: 4, 11, 18, 25, 32, 39, 46, 53, 60, ... Oh look — x = 60 works! So maybe I have \$60

But what if I actually have \$130? Still works... Adding multiples of 70 doesn't change equivalences! Makes sense to consider answer modulo 70.

/ 20

More Complicated Remainders

 $x \equiv 1 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{8}$ Listing method possible, but difficult...



The Quest For b_i

Goal: $b_3 \equiv 1 \pmod{3}$, 0 (mod 5), 0 (mod 8)

Getting last two easy: take $b_3 = 5 \cdot 8 = 40$

Idea: last two still fine for $c \cdot 40$

Choose c st $c \cdot 40 \equiv 1 \pmod{3}$

Means we want $c = 40^{-1} \pmod{3}!$

 $40 \equiv 1 \pmod{3}$, so take c = 1

For b_5 , use $(3 \cdot 8) \cdot (24^{-1} \pmod{5}) = 24 \cdot 4 = 96$

For b_8 , use $(3 \cdot 5) \cdot (15^{-1} \pmod{8}) = 15 \cdot 7 = 105$

Exact same values the genie gave us!

Chinese Remainder Theorem

Theorem: Let $n_1, n_2, ..., n_k$ be coprime. Then

$$x \equiv a_1 \pmod{n_1}$$

 \vdots
 $x \equiv a_k \pmod{n_k}$

has a solution modulo $N = n_1 \cdot n_2 \cdot ... \cdot n_k$.

Proof:

- ▶ Suppose have $b_1, b_2, ..., b_k$ such that
 - $b_i \equiv 1 \pmod{n_i}$
 - $b_i \equiv 0 \pmod{n_i}$ for $j \neq i$
- ▶ Take $x \equiv \prod_{i=1}^k a_i b_i \pmod{N}$

/ 2n

Continue CRT

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- ▶ $b_i \equiv 0 \pmod{n_i}$ for $j \neq i$

Similar to before: $c \cdot \prod_{i \neq i} n_i$ satisfies second point

What should c be?

Want $c \cdot \prod_{i \neq i} n_i \equiv 1 \pmod{n_i}$

So take $c = \left(\prod_{j \neq i} n_j\right)^{-1} \pmod{n_i}$

Note: $\left(\prod_{j\neq i} n_j\right)^{-1} \equiv \left(\prod_{j\neq i} n_j^{-1}\right) \pmod{n_i}$

This is why we need coprimality!

A Small Example

Apply this method to original problem:

 $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$

 $10 \equiv 3 \pmod{7}$, so $b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50$ $b_{10} = 7 \cdot (7^{-1} \pmod{10}) = 21$

Take $x = 4b_7 + 0b_{10} = 200$

Hence $x \equiv 60 \pmod{70}$

Note: didn't actually have to calculate b_{10} here!

A Larger Example

 $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{5}$, $x \equiv 3 \pmod{7}$

- $3 \cdot 5 \cdot 7 = 105 \equiv 1 \pmod{2}$
- $a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$
- $2 \cdot 5 \cdot 7 = 70 \equiv 1 \pmod{3}$
- $a_3 = 70 \cdot (1^{-1} \pmod{3}) = 70$
- $2 \cdot 3 \cdot 7 = 42 \equiv 2 \pmod{5}$
- $a_5 = 42 \cdot (2^{-1} \pmod{5}) = 126$
- $2 \cdot 3 \cdot 5 = 30 \equiv 2 \pmod{7}$
- $a_7 = 30 \cdot (2^{-1} \pmod{7}) = 120$

20

A Larger Example 2

 $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{5}$, $x \equiv 3 \pmod{7}$

Found: $a_2 = 105$, $a_3 = 70$, $a_5 = 126$, $a_7 = 120$

 $x = 105 + 2 \cdot 70 + 126 + 3 \cdot 120 = 731$

Hence $x \equiv 101 \pmod{2 \cdot 3 \cdot 5 \cdot 7} = 210$

Uniqueness

Claim: Solution from CRT is unique (mod *N*).

Proof:

- Suppose have two solutions x and y
- Let z = x y
- ▶ For each i, $z \equiv x y \equiv a_i a_i \equiv 0 \pmod{n_i}$
- ▶ So $n_i|z$ for each i
- ▶ n_i s coprime, so N|z
- ▶ Hence, $x y \equiv z \equiv 0 \pmod{N}$
- ▶ Rearrange to $x \equiv y \pmod{N}$

Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod N).

Proof:

- ▶ Number of possible a_i values: $\prod_i n_i$
- ▶ Number of possible x values: $N = \prod_i n_i$
- ▶ Each $x \in \mathbb{Z}_N$ corresponds to 1 set of a_i
- ▶ If two x collide, $\exists a_i s w/o an x$
- ► Contradicts CRT!

11/20

Break All The Things

Break time!

Today's Discussion Question:

Should orange juice include pulp?

Bijections

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ *f* is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ *f* is bijective if is one-to-one and onto

Examples:

- $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$
 - ▶ One-to-one, but not onto
- $f_2: \mathbb{R}^+ \to \mathbb{R}^+$ given by $f_2(x) = x^2$
 - Bijective
- ▶ CRT gives bijection: $\mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k} \to \mathbb{Z}_N$

14/20

Function Inverses

Alternative definition: f is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

- ▶ Suppose have f⁻¹
- ▶ *f* onto
 - ▶ $\forall y, f^{-1}(y) \in D \text{ st } f(f^{-1}(y)) = y$
- ▶ f one-to-one:
 - Suppose f(x) = f(x')
 - Then $x = f^{-1}(f(x)) = f^{-1}(f(x')) = x'$

Only If Direction

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

- ▶ Suppose *f* bijective
- ▶ Each $y \in R$ has unique $x \in D$ with f(x) = y
- ▶ Let $f^{-1}(y)$ be this x

Note: f^{-1} is itself a bijection!

Have $(f^{-1})^{-1} = f$

Fermat's Little Theorem

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Proof:

- Consider set $S_p = \{1, 2, 3, ..., p-1\}$
- ▶ Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- ▶ Means $\prod_i i \equiv \prod_i ia \equiv a^{p-1} \prod_i i \pmod{p}$
- Multiply by $\prod_i i^{-1}$, get $1 \equiv a^{p-1} \pmod{p}$

Proof Of Claim

To finish FLT proof, need to prove:

Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$ **Proof**:

- ▶ Need that for $x \in S_p$, $f(x) \in S_p$
 - If $x \in S_p$, $p \nmid x$
 - p // a either, so p // ax
 - ▶ Hence $ax \pmod{p} \in S_p$
- ▶ Inverse is $f^{-1}(y) = a^{-1}y \pmod{p}$
 - $f^{-1}(f(x)) \equiv a^{-1}ax \equiv x \pmod{p}$
 - $f(f^{-1}(x)) \equiv aa^{-1}x \equiv x \pmod{p}$

17/20

10 / 20

¹This is often denoted $f: D \rightarrow R$.

Uses For Fermat

Speed up repeated-squaring algorithm

- ► Can't take modulus of exponent
- lacksquare But if modulus prime, can take modulo p-1

Eg: $3^{661} = (3^6)^{110} \cdot 3 \equiv 3 \pmod{7}$

Used critically in RSA cryptosystem! See more of this next week Fin

Next time: cryptography!

19/20