
Lecture 7: Modular Arithmetic 2
Yo Dawg I Heard You Like Modular Arithmetic
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A Remainder Problem
I want to buy cookies for lecture.
Box A costs $7, Box B costs $10.
Buy only box A: $4 left over
Buy only box B: use up all my money
How much money did I start with?
Mathematically: find x such that
x ≡ 4 (mod 7)
x ≡ 0 (mod 10)
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Remainder Solution
Want x such that x ≡ 4 (mod 7), x ≡ 0 (mod 10)
Is there a solution? idk...let’s try finding one!
List all positive x such that x ≡ 4 (mod 7):
4, 11, 18, 25, 32, 39, 46, 53, 60, ...
Oh look — x = 60 works! So maybe I have $60
But what if I actually have $130? Still works...
Adding multiples of 70 doesn’t change equivalences!
Makes sense to consider answer modulo 70.
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More Complicated Remainders
x ≡ 1 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 8)
Listing method possible, but difficult...

b3 = 40
b5 = 96
b8 = 105
Why did we want these?
x ≡ 1 · b3 + 3 · b5 + 2 · b8!
For this problem:

x ≡ 40 + 288 + 210
≡ 58 (mod 120)
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The Quest For bi
Goal: b3 ≡ 1 (mod 3), 0 (mod 5), 0 (mod 8)
Getting last two easy: take b3 = 5 · 8 = 40
Idea: last two still fine for c · 40
Choose c st c · 40 ≡ 1 (mod 3)
Means we want c = 40−1 (mod 3)!
40 ≡ 1 (mod 3), so take c = 1
For b5, use (3 · 8) · (24−1 (mod 5)) = 24 · 4 = 96
For b8, use (3 · 5) · (15−1 (mod 8)) = 15 · 7 = 105
Exact same values the genie gave us!

5 / 20



Chinese Remainder Theorem
Theorem: Let n1, n2, ..., nk be coprime. Then

x ≡ a1 (mod n1)...
x ≡ ak (mod nk)

has a solution modulo N = n1 · n2 · ... · nk.
Proof:

▶ Suppose have b1, b2, ..., bk such that
▶ bi ≡ 1 (mod ni)
▶ bi ≡ 0 (mod nj) for j ̸= i

▶ Take x ≡
∏k

i=1 aibi (mod N)
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Continue CRT
Finish proof: show how to create bi such that

▶ bi ≡ 1 (mod ni)

▶ bi ≡ 0 (mod nj) for j ̸= i

Similar to before: c ·
∏

j̸=i nj satisfies second point
What should c be?
Want c ·

∏
j̸=i nj ≡ 1 (mod ni)

So take c =
(∏

j̸=i nj
)−1

(mod ni)

Note:
(∏

j̸=i nj
)−1

≡
(∏

j̸=i n−1
j

)
(mod ni)

This is why we need coprimality!
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A Small Example
Apply this method to original problem:
x ≡ 4 (mod 7), x ≡ 0 (mod 10)
10 ≡ 3 (mod 7), so b7 = 10 · (3−1 (mod 7)) = 50
b10 = 7 · (7−1 (mod 10)) = 21
Take x = 4b7 + 0b10 = 200
Hence x ≡ 60 (mod 70)
Note: didn’t actually have to calculate b10 here!
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A Larger Example
x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 1 (mod 5),
x ≡ 3 (mod 7)

▶ 3 · 5 · 7 = 105 ≡ 1 (mod 2)
▶ a2 = 105 · (1−1 (mod 2)) = 105

▶ 2 · 5 · 7 = 70 ≡ 1 (mod 3)
▶ a3 = 70 · (1−1 (mod 3)) = 70

▶ 2 · 3 · 7 = 42 ≡ 2 (mod 5)
▶ a5 = 42 · (2−1 (mod 5)) = 126

▶ 2 · 3 · 5 = 30 ≡ 2 (mod 7)
▶ a7 = 30 · (2−1 (mod 7)) = 120
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A Larger Example 2
x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 1 (mod 5),
x ≡ 3 (mod 7)
Found: a2 = 105, a3 = 70, a5 = 126, a7 = 120
x = 105 + 2 · 70 + 126 + 3 · 120 = 731
Hence x ≡ 101 (mod 2 · 3 · 5 · 7 = 210)
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Uniqueness
Claim: Solution from CRT is unique (mod N).
Proof:

▶ Suppose have two solutions x and y
▶ Let z = x − y
▶ For each i, z ≡ x − y ≡ ai − ai ≡ 0 (mod ni)

▶ So ni|z for each i
▶ nis coprime, so N|z
▶ Hence, x − y ≡ z ≡ 0 (mod N)
▶ Rearrange to x ≡ y (mod N)
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Uniqueness Proof Is Not Unique
Claim: Solution from CRT is unique (mod N).
Proof:

▶ Number of possible ai values:
∏

i ni
▶ Number of possible x values: N =

∏
i ni

▶ Each x ∈ ZN corresponds to 1 set of ai
▶ If two x collide, ∃ ais w/o an x
▶ Contradicts CRT!
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Break All The Things
Break time!
Today’s Discussion Question:
Should orange juice include pulp?
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Bijections
Let f be a function from D to R1

f is one-to-one (injective) if f(x) ̸= f(x′) for x ̸= x′
f is onto (surjective) if (∀y ∈ R)(∃x ∈ D)(f(x) = y)
f is bijective if is one-to-one and onto
Examples:

▶ f1 : N → N given by f1(x) = 2x
▶ One-to-one, but not onto

▶ f2 : R+ → R+ given by f2(x) = x2

▶ Bijective
▶ CRT gives bijection: Zn1 × ...× Znk → ZN

1This is often denoted f : D → R.
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Function Inverses
Alternative definition: f is bijective if has inverse
Theorem: Let f : D → R. f is bijective iff ∃f−1 st
f(f−1(y)) = y and f−1(f(x)) = x.
Proof (if):

▶ Suppose have f−1

▶ f onto
▶ ∀y, f−1(y) ∈ D st f(f−1(y)) = y

▶ f one-to-one:
▶ Suppose f(x) = f(x′)
▶ Then x = f−1(f(x)) = f−1(f(x′)) = x′

15 / 20



Only If Direction
Theorem: Let f : D → R. f is bijective iff ∃f−1 st
f(f−1(y)) = y and f−1(f(x)) = x.
Proof (only if):

▶ Suppose f bijective
▶ Each y ∈ R has unique x ∈ D with f(x) = y
▶ Let f−1(y) be this x

Note: f−1 is itself a bijection!
Have (f−1)−1 = f
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Fermat’s Little Theorem
Theorem: Let p be a prime and a ̸≡ 0 (mod p).
Then ap−1 ≡ 1 (mod p).
Proof:

▶ Consider set Sp = {1, 2, 3, ..., p − 1}
▶ Claim: f(x) = ax (mod p) is bijection Sp → Sp
▶ {1, 2, ..., p− 1} = {a, 2a, ..., (p− 1)a} (mod p)
▶ Means

∏
i i ≡

∏
i ia ≡ ap−1 ∏

i i (mod p)
▶ Multiply by

∏
i i−1, get 1 ≡ ap−1 (mod p)
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Proof Of Claim
To finish FLT proof, need to prove:
Claim: f(x) = ax (mod p) is bijection Sp → Sp
Proof:

▶ Need that for x ∈ Sp, f(x) ∈ Sp
▶ If x ∈ Sp, p ̸ | x
▶ p ̸ | a either, so p ̸ | ax
▶ Hence ax (mod p) ∈ Sp

▶ Inverse is f−1(y) = a−1y (mod p)
▶ f−1(f(x)) ≡ a−1ax ≡ x (mod p)
▶ f(f−1(x)) ≡ aa−1x ≡ x (mod p)

18 / 20



Uses For Fermat
Speed up repeated-squaring algorithm

▶ Can’t take modulus of exponent
▶ But if modulus prime, can take modulo p − 1

Eg: 3661 = (36)110 · 3 ≡ 3 (mod 7)
Used critically in RSA cryptosystem!
See more of this next week
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Fin
Next time: cryptography!
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