Lecture 7: Modular Arithmetic 2 Yo Dawg I Heard You Like Modular Arithmetic

A Remainder Problem

I want to buy cookies for lecture. Box A costs \$7, Box B costs \$10.

Buy only box A: \$4 left over Buy only box B: use up all my money How much money did I start with?

Mathematically: find x such that $x \equiv 4 \pmod{7}$ $x \equiv 0 \pmod{10}$

Remainder Solution

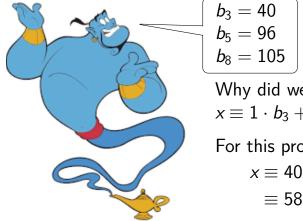
Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution? idk...let's try finding one!

List all positive x such that $x \equiv 4 \pmod{7}$: 4, 11, 18, 25, 32, 39, 46, 53, 60, ... Oh look — x = 60 works! So maybe I have \$60

But what if I actually have \$130? Still works... Adding multiples of 70 doesn't change equivalences! Makes sense to consider answer modulo 70.

More Complicated Remainders

 $x \equiv 1 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{8}$ Listing method possible, but difficult...



Why did we want these? $x \equiv 1 \cdot b_3 + 3 \cdot b_5 + 2 \cdot b_8!$

For this problem:

- $x \equiv 40 + 288 + 210$
 - $\equiv 58 \pmod{120}$

The Quest For b_i

Goal: $b_3 \equiv 1 \pmod{3}$, 0 (mod 5), 0 (mod 8)

Getting last two easy: take $b_3 = 5 \cdot 8 = 40$

Idea: last two still fine for $c \cdot 40$ Choose c st $c \cdot 40 \equiv 1 \pmod{3}$ Means we want $c = 40^{-1} \pmod{3}!$ $40 \equiv 1 \pmod{3}$, so take c = 1For b_5 , use $(3 \cdot 8) \cdot (24^{-1} \pmod{5}) = 24 \cdot 4 = 96$ For b_8 , use $(3 \cdot 5) \cdot (15^{-1} \pmod{8}) = 15 \cdot 7 = 105$ Exact same values the genie gave us!

Chinese Remainder Theorem Theorem: Let $n_1, n_2, ..., n_k$ be coprime. Then $x \equiv a_1 \pmod{n_1}$:

$$x \equiv a_k \pmod{n_k}$$

has a solution modulo $N = n_1 \cdot n_2 \cdot \ldots \cdot n_k$.

Proof:

Suppose have b₁, b₂, ..., b_k such that
 b_i ≡ 1 (mod n_i)
 b_i ≡ 0 (mod n_j) for j ≠ i
 Take x ≡ ∏^k_{i=1} a_ib_i (mod N)

Continue CRT

Finish proof: show how to create b_i such that

$$\blacktriangleright \ b_i \equiv 1 \pmod{n_i}$$

•
$$b_i \equiv 0 \pmod{n_j}$$
 for $j \neq i$

Similar to before: $c \cdot \prod_{j \neq i} n_j$ satisfies second point

What should c be? Want $c \cdot \prod_{j \neq i} n_j \equiv 1 \pmod{n_i}$ So take $c = \left(\prod_{j \neq i} n_j\right)^{-1} \pmod{n_i}$ Note: $\left(\prod_{j \neq i} n_j\right)^{-1} \equiv \left(\prod_{j \neq i} n_j^{-1}\right) \pmod{n_i}$ This is why we need coprimality!

A Small Example

Apply this method to original problem: $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ $10 \equiv 3 \pmod{7}$, so $b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50$ $b_{10} = 7 \cdot (7^{-1} \pmod{10}) = 21$ Take $x = 4b_7 + 0b_{10} = 200$ Hence $x \equiv 60 \pmod{70}$

Note: didn't actually have to calculate b_{10} here!

A Larger Example

$$x \equiv 1 \pmod{2}$$
, $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{5}$,
 $x \equiv 3 \pmod{7}$

3 · 5 · 7 = 105 ≡ 1 (mod 2)
$$a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$$

2 · 5 · 7 = 70 ≡ 1 (mod 3)
$$a_3 = 70 \cdot (1^{-1} \pmod{3}) = 70$$

2 · 3 · 7 = 42 ≡ 2 (mod 5)
$$a_5 = 42 \cdot (2^{-1} \pmod{5}) = 126$$

$$\bullet 2 \cdot 3 \cdot 5 = 30 \equiv 2 \pmod{7}$$

•
$$a_7 = 30 \cdot (2^{-1} \pmod{7}) = 120$$

A Larger Example 2

 $x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}$ Found: $a_2 = 105, a_3 = 70, a_5 = 126, a_7 = 120$ $x = 105 + 2 \cdot 70 + 126 + 3 \cdot 120 = 731$ Hence $x \equiv 101 \pmod{2 \cdot 3 \cdot 5 \cdot 7} = 210$

Uniqueness

Claim: Solution from CRT is unique (mod *N*). **Proof**:

Suppose have two solutions x and y

• Let
$$z = x - y$$

- For each *i*, $z \equiv x y \equiv a_i a_i \equiv 0 \pmod{n_i}$
- So $n_i | z$ for each *i*
- n_i s coprime, so N|z
- Hence, $x y \equiv z \equiv 0 \pmod{N}$
- Rearrange to $x \equiv y \pmod{N}$

Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod *N*). **Proof**:

- Number of possible a_i values: $\prod_i n_i$
- Number of possible x values: $N = \prod_i n_i$
- Each $x \in \mathbb{Z}_N$ corresponds to 1 set of a_i
- If two x collide, $\exists a_i s w/o an x$
- Contradicts CRT!

Break All The Things

Break time!

Today's Discussion Question:

Should orange juice include pulp?

Bijections

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

Examples:

f₁ : N → N given by f₁(x) = 2x
One-to-one, but not onto
f₂ : R⁺ → R⁺ given by f₂(x) = x²
Bijective

• CRT gives bijection: $\mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k} \to \mathbb{Z}_N$

¹This is often denoted $f: D \rightarrow R$.

Function Inverses

Alternative definition: f is bijective if has inverse

Theorem: Let $f: D \to R$. *f* is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

- ▶ Suppose have f⁻¹
- ► f onto

$$\forall y, \ f^{-1}(y) \in D \ \text{st} \ f(f^{-1}(y)) = y$$

- f one-to-one:
 - Suppose f(x) = f(x')
 - Then $x = f^{-1}(f(x)) = f^{-1}(f(x')) = x'$

Only If Direction

Theorem: Let $f: D \to R$. *f* is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

- Suppose f bijective
- Each y ∈ R has unique x ∈ D with f(x) = y
 Let f⁻¹(y) be this x

Note: f^{-1} is itself a bijection! Have $(f^{-1})^{-1} = f$

Fermat's Little Theorem

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Proof:

- Consider set $S_p = \{1, 2, 3, ..., p 1\}$
- Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- $\{1, 2, ..., p-1\} = \{a, 2a, ..., (p-1)a\} \pmod{p}$
- Means $\prod_i i \equiv \prod_i ia \equiv a^{p-1} \prod_i i \pmod{p}$
- Multiply by $\prod_i i^{-1}$, get $1 \equiv a^{p-1} \pmod{p}$

Proof Of Claim

To finish FLT proof, need to prove: **Claim**: $f(x) = ax \pmod{p}$ is bijection $S_p \rightarrow S_p$ **Proof**:

Need that for x ∈ S_p, f(x) ∈ S_p
If x ∈ S_p, p ¼ x
p ∦ a either, so p ∦ ax
Hence ax (mod p) ∈ S_p
Inverse is f⁻¹(y) = a⁻¹y (mod p)
f⁻¹(f(x)) ≡ a⁻¹ax ≡ x (mod p)
f(f⁻¹(x)) ≡ aa⁻¹x ≡ x (mod p)

Uses For Fermat

Speed up repeated-squaring algorithm

- Can't take modulus of exponent
- But if modulus prime, can take modulo p-1Eg: $3^{661} = (3^6)^{110} \cdot 3 \equiv 3 \pmod{7}$

Used critically in RSA cryptosystem! See more of this next week

Fin

Next time: cryptography!