Lecture 7: Modular Arithmetic 2
Yo Dawg | Heard You Like Modular Arithmetic

/20



A Remainder Problem

| want to buy cookies for lecture.
Box A costs $7, Box B costs $10.
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A Remainder Problem

| want to buy cookies for lecture.
Box A costs $7, Box B costs $10.

Buy only box A: $4 left over
Buy only box B: use up all my money
How much money did | start with?

Mathematically: find x such that
x=4 (mod 7)
x=0 (mod 10)
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Is there a solution?
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Remainder Solution

Want x such that x=4 (mod 7), x=0 (mod 10)
Is there a solution? idk...let's try finding one!

List all positive x such that x=4 (mod 7):
4,11, 18, 25, 32, 39, 46, 53, 60, ...
Oh look — x = 60 works! So maybe | have $60

But what if | actually have $1307 Still works...
Adding multiples of 70 doesn't change equivalences!
Makes sense to consider answer modulo 70.



More Complicated Remainders
x=1 (mod 3), x=3 (mod 5), x=2 (mod 8)
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More Complicated Remainders

x=1 (mod 3), x=3 (mod 5), x=2 (mod 8)
Listing method possible, but difficult...

Why did we want these?
XElb3—|—3b5—|—2b8|

For this problem:
x =40 4 288 + 210
=58 (mod 120)
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More Complicated Remainders

x=1 (mod 3), x=3 (mod 5), x=2 (mod 8)
Listing method possible, but difficult...

bz = 40
bs = 96
bg = 105

Why did we want these?
XElb3+3b5+2b8'
For this problem:
x = 40 + 288 + 210
=58 (mod 120)
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The Quest For b,
Goal: b3 =1 (mod 3), 0 (mod 5), 0 (mod 8)
Getting last two easy: take b3 =5-8 =40

Idea: last two still fine for c- 40
Choose cst c-40 =1 (mod 3)
Means we want ¢ = 40! (mod 3)!
40 =1 (mod 3), so take c=1

For bs, use (3-8)- (247! (mod 5)) =24-4 =096
For bg, use (3-5)- (157! (mod 8)) = 15-7 = 105

Exact same values the genie gave us!
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Chinese Remainder Theorem

Theorem: Let ny, ny, ..., ny be coprime. Then

x= a; (mod n)

x = ax (mod ny)

has a solution modulo N=ny - ny - ... - ny.

Proof:
» Suppose have by, by, ..., by such that
» b;=1 (mod n)
» bi=0 (mod n)) for j# i

» Take x =[], aib; (mod N)
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Continue CRT

Finish proof: show how to create b; such that
» bij=1 (mod n;)
» bj=0 (mod n;) for j# i

Similar to before: c- [],, n; satisfies second point

What should ¢ be?
Want ¢+ [[.;n; =1 (mod n;)

So take ¢ = (H#inj> (mod ny)

Note: (Hﬁg,nj> B = <Hj;éinj1) (mod n;)

This is why we need coprimality!
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x=4 (mod 7), x=0 (mod 10)
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A Small Example

Apply this method to original problem:
x=4 (mod 7), x=0 (mod 10)

10 =3 (mod 7), so by =10 - (37! (mod 7)) = 50
bio =7 (77! (mod 10)) = 21

Take x = 4b; + 0b;g = 200
Hence x =60 (mod 70)

Note: didn't actually have to calculate byg here!
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x=1 (mod 2), x=2 (mod 3), x=1 (mod 5),
x=3 (mod 7)

»3.5.7=105=1 (mod 2)

+ 2 =105- (17! (mod 2)) = 105

»2-5.7=70=1 (mod 3)
» a3=70-(1"! (mod 3)) =70
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»3.5.7=105=1 (mod 2)
a =105 (171 (mod 2)) = 105
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A Larger Example

x=1 (mod 2), x=2 (mod 3), x=1 (mod 5),
x=3 (mod 7)

»3.5.7=105=1 (mod 2)
a =105 (171 (mod 2)) = 105

v

v

2:5-7=70=1 (mod 3)
a3 =70- (171 (mod 3)) = 70

v

v

2:3-7=42=2 (mod 5)
as =42 - (27! (mod 5)) = 126

\4

v

2:3:5=30=2 (mod 7)
a7 =30 (27! (mod 7)) = 120

v



A Larger Example 2
x=1 (mod 2), x=2 (mod 3), x=1 (mod 5),

x=3 (mod 7)
Found: a, = 105, a3 = 70, a5 = 126, a; = 120
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A Larger Example 2

x=1 (mod 2), x=2 (mod 3), x=1 (mod 5),

x=3 (mod 7)
Found: a, = 105, a3 = 70, a5 = 126, a; = 120

x=105+2-70+126+3-120 =731
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A Larger Example 2

x=1 (mod 2), x=2 (mod 3), x=1 (mod 5),

x=3 (mod 7)
Found: a, = 105, a3 = 70, a5 = 126, a; = 120

x=105+2-70+126+3-120 =731
Hence x =101 (mod 2-3-5-7 = 210)

10/ 2
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Claim: Solution from CRT is unique (mod N).
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Uniqueness

Claim: Solution from CRT is unique (mod N).
Proof:

» Suppose have two solutions x and y

» Let z=x—y

» Foreach i, z=x—y=a;—a,=0 (mod n))
» So nj|z for each i
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Uniqueness
Claim: Solution from CRT is unique (mod N).

Proof:
» Suppose have two solutions x and y
» Let z=x—y

v

Foreach i, z=x—y=a,— a;=0 (mod n;)
So nj|z for each i

v

v

n;s coprime, so N|z
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Uniqueness

Claim: Solution from CRT is unique (mod N).
Proof:

>

>

>

Suppose have two solutions x and y

let z=x—y

Foreach i, z=x—y=a,— a;=0 (mod n;)
So nj|z for each i

n;s coprime, so N|z

Hence, x— y=z=0 (mod N)

Rearrange to x =y (mod N)

11/20



Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod N).

Proof:
> Number of possible a; values: [];n;
> Number of possible x values: N =[], n;
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Uniqueness Proof Is Not Unique
Claim: Solution from CRT is unique (mod N).

Proof:
> Number of possible a; values: [];n;
> Number of possible x values: N =[], n;

v

Each x € Zy corresponds to 1 set of a;

If two x collide, 3 a;s w/o an x
Contradicts CRT!

v

v
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Break All The Things

Break time!

Today’s Discussion Question:
Should orange juice include pulp?
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fis bijective if is one-to-one and onto

Examples:
» f, : N — N given by fi(x) = 2x
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IThis is often denoted f: D — R.
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Bijections
Let fbe a function from D to R!
fis one-to-one (injective) if f{x) # f(X) for x # X
fis onto (surjective) if (Vy € R)(Ix € D)(f(x) = y)
fis bijective if is one-to-one and onto
Examples:
» 1 : N — N given by fi(x) = 2x
> One-to-one, but not onto
> f,: RT — R* given by f(x) = x°
» Bijective
» CRT gives bijection: Zp, X ... X Zpn, = Zn

IThis is often denoted f: D — R.

14 /2
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Function Inverses
Alternative definition: fis bijective if has inverse

Theorem: Let f: D — R. fis bijective iff 31 st
f1(y)) = yand FH(fx) = x
Proof (if):

» Suppose have !

» fonto

» Yy, Fi(y) e Dst if '(y)) =y
» fone-to-one:

» Suppose f(x) = f(X)
» Then x = F(f(x)) = FYAX)) =¥

15/ 2



Only If Direction

Theorem: Let f: D — R. fis bijective iff 31 st
f1(y)) = yand FH(fx) = x
Proof (only if):

» Suppose f bijective
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Only If Direction

Theorem: Let f: D — R. fis bijective iff 31 st
ff1(y)) =y and F(fx)) = x.
Proof (only if):
» Suppose f bijective
» Each y € R has unique x € D with fix) =y
» Let £ 1(y) be this x

Note: f 1 is itself a bijection!
Have (f1)™ 1 =f

16/ 2
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Theorem: Let p be a prime and a Z 0 (mod p).
Then 21 =1 (mod p).
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Fermat’'s Little Theorem

Theorem: Let p be a prime and a Z 0 (mod p).

Then 21 =1 (mod p).

Proof:
» Consider set 5, ={1,2,3,...,p— 1}
» Claim: fix) = ax (mod p) is bijection S, = S,
» {1,2,....,p—1} ={a,2a,...,(p—1)a} (mod p)
» Means [[,i=];ia= 2" *[];i (mod p)
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Fermat's Little Theorem

Theorem: Let p be a prime and a Z 0 (mod p).
Then 21 =1 (mod p).
Proof:

» Consider set 5, ={1,2,3,...,p— 1}
Claim: f{x) = ax (mod p) is bijection S, = S,
{1,2,...,p—1} ={a,2a,...,(p—1)a} (mod p)
Means [[;i=[[,ia= a* ' [],i (mod p)
Multiply by [],i™*, get 1 = 2"~ (mod p)

v

v

v

v
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Proof Of Claim

To finish FLT proof, need to prove:
Claim: f{x) = ax (mod p) is bijection S, = S,
Proof:

> Need that for x € Sp, f(x) € S,
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Proof:
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» fxe Sy p fx
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» Hence ax (mod p) € S,
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Proof Of Claim

To finish FLT proof, need to prove:

Claim: f{x) = ax (mod p) is bijection S, = S,

Proof:
» Need that for x€ S,, f(x) € S
» fxe Sy p fx
» p [ aeither, so p [ ax
» Hence ax (mod p) €S,
> Inverse is F1(y) = a_ y (mod p)

f1(f(x)) = atax = x (mod p)
f(f 1(x)) = aa x = x (mod p)

18 /2



Uses For Fermat

Speed up repeated-squaring algorithm

» Can't take modulus of exponent

» But if modulus prime, can take modulo p —1
Eg: 3% = (3%)119.3 =3 (mod 7)
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Uses For Fermat

Speed up repeated-squaring algorithm

» Can't take modulus of exponent

» But if modulus prime, can take modulo p —1
Eg: 3% = (3%)119.3 =3 (mod 7)

Used critically in RSA cryptosystem!
See more of this next week
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Fin

Next time: cryptography!
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