Lecture 7: Modular Arithmetic 2 Yo Dawg I Heard You Like Modular Arithmetic

A Remainder Problem

I want to buy cookies for lecture. Box A costs \$7, Box B costs \$10.

A Remainder Problem

I want to buy cookies for lecture. Box A costs \$7, Box B costs \$10.

Buy only box A: \$4 left over Buy only box B: use up all my money How much money did I start with?

A Remainder Problem

I want to buy cookies for lecture. Box A costs \$7, Box B costs \$10.

Buy only box A: \$4 left over Buy only box B: use up all my money How much money did I start with?

Mathematically: find x such that $x \equiv 4 \pmod{7}$ $x \equiv 0 \pmod{10}$

Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution?

Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution? idk…let's try finding one!

Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution? idk…let's try finding one!

List all positive x such that $x \equiv 4 \pmod{7}$: 4, 11, 18, 25, 32, 39, 46, 53, 60, ...

```
Want x such that x \equiv 4 \pmod{7}, x \equiv 0 \pmod{10} Is there a solution? idk…let's try finding one!
```

```
List all positive x such that x \equiv 4 \pmod{7}:
4, 11, 18, 25, 32, 39, 46, 53, 60, ...
Oh look — x = 60 works! So maybe I have $60
```

```
Want x such that x \equiv 4 \pmod{7}, x \equiv 0 \pmod{10} Is there a solution? idk…let's try finding one!
```

List all positive x such that $x \equiv 4 \pmod{7}$: 4, 11, 18, 25, 32, 39, 46, 53, 60, ... Oh look — x = 60 works! So maybe I have \$60

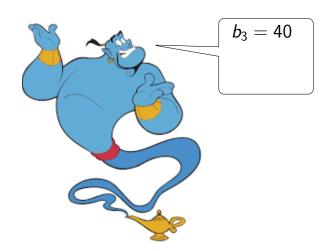
But what if I actually have \$130? Still works...

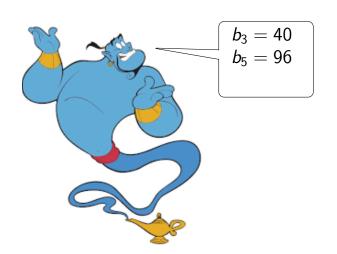
Want x such that $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ Is there a solution? idk…let's try finding one!

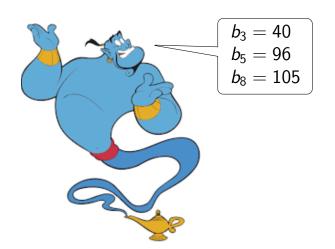
List all positive x such that $x \equiv 4 \pmod{7}$: 4, 11, 18, 25, 32, 39, 46, 53, 60, ... Oh look — x = 60 works! So maybe I have \$60

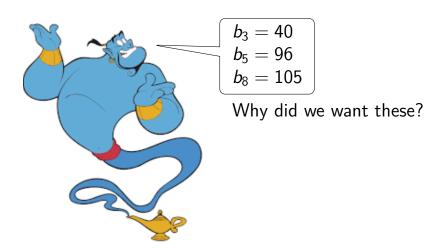
But what if I actually have \$130? Still works... Adding multiples of 70 doesn't change equivalences! Makes sense to consider answer modulo 70.

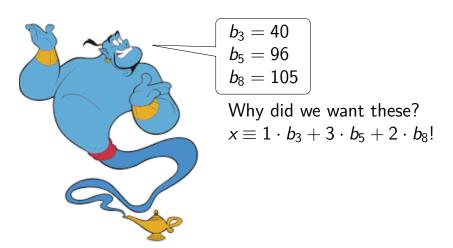
$$x \equiv 1 \pmod{3}$$
, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{8}$

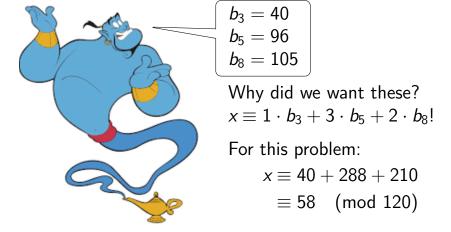












 $x \equiv 1 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{8}$ Listing method possible, but difficult...

$$b_3 = 40$$

 $b_5 = 96$
 $b_8 = 105$

Why did we want these? $x \equiv 1 \cdot b_3 + 3 \cdot b_5 + 2 \cdot b_8!$

For this problem:

$$x \equiv 40 + 288 + 210$$
$$\equiv 58 \pmod{120}$$

Goal: $b_3 \equiv 1 \pmod{3}$, 0 (mod 5), 0 (mod 8)

The Quest For b_i

Goal: $b_3 \equiv 1 \pmod{3}$, 0 (mod 5), 0 (mod 8)

Getting last two easy: take $b_3 = 5 \cdot 8 = 40$

Goal: $b_3 \equiv 1 \pmod{3}$, 0 (mod 5), 0 (mod 8)

Getting last two easy: take $b_3 = 5 \cdot 8 = 40$

Idea: last two still fine for $c \cdot 40$

Choose c st $c \cdot 40 \equiv 1 \pmod{3}$

```
Goal: b_3 \equiv 1 \pmod{3}, 0 (mod 5), 0 (mod 8)
Getting last two easy: take b_3 = 5 \cdot 8 = 40
Idea: last two still fine for c \cdot 40
Choose c st c \cdot 40 \equiv 1 \pmod{3}
Means we want c = 40^{-1} \pmod{3}!
40 \equiv 1 \pmod{3}, so take c = 1
```

```
Goal: b_3 \equiv 1 \pmod{3}, 0 (mod 5), 0 (mod 8)
Getting last two easy: take b_3 = 5 \cdot 8 = 40
Idea: last two still fine for c \cdot 40
Choose c st c \cdot 40 \equiv 1 \pmod{3}
Means we want c = 40^{-1} \pmod{3}!
40 \equiv 1 \pmod{3}, so take c = 1
For b_5, use (3 \cdot 8) \cdot (24^{-1} \pmod{5}) = 24 \cdot 4 = 96
```

```
Goal: b_3 \equiv 1 \pmod{3}, 0 (mod 5), 0 (mod 8)
Getting last two easy: take b_3 = 5 \cdot 8 = 40
Idea: last two still fine for c \cdot 40
Choose c st c \cdot 40 \equiv 1 \pmod{3}
Means we want c = 40^{-1} \pmod{3}!
40 \equiv 1 \pmod{3}, so take c = 1
For b_5, use (3 \cdot 8) \cdot (24^{-1} \pmod{5}) = 24 \cdot 4 = 96
For b_8, use (3 \cdot 5) \cdot (15^{-1} \pmod{8}) = 15 \cdot 7 = 105
```

```
Goal: b_3 \equiv 1 \pmod{3}, 0 (mod 5), 0 (mod 8)
Getting last two easy: take b_3 = 5 \cdot 8 = 40
Idea: last two still fine for c \cdot 40
Choose c st c \cdot 40 \equiv 1 \pmod{3}
Means we want c = 40^{-1} \pmod{3}!
40 \equiv 1 \pmod{3}, so take c = 1
For b_5, use (3 \cdot 8) \cdot (24^{-1} \pmod{5}) = 24 \cdot 4 = 96
For b_8, use (3 \cdot 5) \cdot (15^{-1} \pmod{8}) = 15 \cdot 7 = 105
Exact same values the genie gave us!
```

Chinese Remainder Theorem

Theorem: Let $n_1, n_2, ..., n_k$ be coprime. Then

$$x \equiv a_1 \pmod{n_1}$$

 \vdots
 $x \equiv a_k \pmod{n_k}$

has a solution modulo $N = n_1 \cdot n_2 \cdot ... \cdot n_k$.

Chinese Remainder Theorem

Theorem: Let $n_1, n_2, ..., n_k$ be coprime. Then

$$x \equiv a_1 \pmod{n_1}$$

 \vdots
 $x \equiv a_k \pmod{n_k}$

has a solution modulo $N = n_1 \cdot n_2 \cdot ... \cdot n_k$.

Proof:

- ▶ Suppose have $b_1, b_2, ..., b_k$ such that
 - $b_i \equiv 1 \pmod{n_i}$
 - $b_i \equiv 0 \pmod{n_j}$ for $j \neq i$

Chinese Remainder Theorem

Theorem: Let $n_1, n_2, ..., n_k$ be coprime. Then

$$x \equiv a_1 \pmod{n_1}$$

 \vdots
 $x \equiv a_k \pmod{n_k}$

has a solution modulo $N = n_1 \cdot n_2 \cdot ... \cdot n_k$.

Proof:

- ▶ Suppose have $b_1, b_2, ..., b_k$ such that
 - ▶ $b_i \equiv 1 \pmod{n_i}$
 - $b_i \equiv 0 \pmod{n_i}$ for $j \neq i$
- ▶ Take $x \equiv \prod_{i=1}^k a_i b_i \pmod{N}$

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- $b_i \equiv 0 \pmod{n_j}$ for $j \neq i$

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- $b_i \equiv 0 \pmod{n_j}$ for $j \neq i$

Similar to before: $c \cdot \prod_{j \neq i} n_j$ satisfies second point

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- $b_i \equiv 0 \pmod{n_j} \text{ for } j \neq i$

Similar to before: $c \cdot \prod_{j \neq i} n_j$ satisfies second point

What should c be?

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- ▶ $b_i \equiv 0 \pmod{n_j}$ for $j \neq i$

Similar to before: $c \cdot \prod_{j \neq i} n_j$ satisfies second point

What should c be?

Want
$$c \cdot \prod_{j \neq i} n_j \equiv 1 \pmod{n_i}$$

So take
$$c = \left(\prod_{j \neq i} n_j\right)^{-1} \pmod{n_i}$$

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- ▶ $b_i \equiv 0 \pmod{n_i}$ for $j \neq i$

Similar to before: $c \cdot \prod_{i \neq j} n_i$ satisfies second point

What should c be?

Want
$$c \cdot \prod_{j \neq i} n_j \equiv 1 \pmod{n_i}$$

So take
$$c = \left(\prod_{j \neq i} n_j\right)^{-1} \pmod{n_i}$$

Note:
$$\left(\prod_{j\neq i} n_j\right)^{-1} \equiv \left(\prod_{j\neq i} n_j^{-1}\right) \pmod{n_i}$$

Finish proof: show how to create b_i such that

- $b_i \equiv 1 \pmod{n_i}$
- ▶ $b_i \equiv 0 \pmod{n_j}$ for $j \neq i$

Similar to before: $c \cdot \prod_{i \neq j} n_j$ satisfies second point

What should c be?

Want $c \cdot \prod_{j \neq i} n_j \equiv 1 \pmod{n_i}$

So take
$$c = \left(\prod_{j \neq i} n_j\right)^{-1} \pmod{n_i}$$

Note: $\left(\prod_{j\neq i} n_j\right)^{-1} \equiv \left(\prod_{j\neq i} n_j^{-1}\right) \pmod{n_i}$ This is why we need coprimality!

Apply this method to original problem: $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$

Apply this method to original problem: $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$

$$10 \equiv 3 \pmod{7}$$
, so $b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50$

Apply this method to original problem: $x \equiv 4 \pmod{7}$, $x \equiv 0 \pmod{10}$ $10 \equiv 3 \pmod{7}$, so $b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50$ $b_{10} = 7 \cdot (7^{-1} \pmod{10}) = 21$

```
Apply this method to original problem: x \equiv 4 \pmod{7}, x \equiv 0 \pmod{10} 10 \equiv 3 \pmod{7}, so b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50 b_{10} = 7 \cdot (7^{-1} \pmod{10}) = 21 Take x = 4b_7 + 0b_{10} = 200 Hence x \equiv 60 \pmod{70}
```

Apply this method to original problem: $x \equiv 4 \pmod{7}, \ x \equiv 0 \pmod{10}$ $10 \equiv 3 \pmod{7}, \ \text{so} \ b_7 = 10 \cdot (3^{-1} \pmod{7}) = 50$ $b_{10} = 7 \cdot (7^{-1} \pmod{10}) = 21$ Take $x = 4b_7 + 0b_{10} = 200$ Hence $x \equiv 60 \pmod{70}$

Note: didn't actually have to calculate b_{10} here!

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
```

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
```

- ▶ $3 \cdot 5 \cdot 7 = 105 \equiv 1 \pmod{2}$
- $a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
```

- ▶ $3 \cdot 5 \cdot 7 = 105 \equiv 1 \pmod{2}$
- $a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$
- $2 \cdot 5 \cdot 7 = 70 \equiv 1 \pmod{3}$
- $a_3 = 70 \cdot (1^{-1} \pmod{3}) = 70$

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
```

- $3 \cdot 5 \cdot 7 = 105 \equiv 1 \pmod{2}$
- $a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$
- $2 \cdot 5 \cdot 7 = 70 \equiv 1 \pmod{3}$
- $a_3 = 70 \cdot (1^{-1} \pmod{3}) = 70$
- $2 \cdot 3 \cdot 7 = 42 \equiv 2 \pmod{5}$
- $a_5 = 42 \cdot (2^{-1} \pmod{5}) = 126$

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
```

- ▶ $3 \cdot 5 \cdot 7 = 105 \equiv 1 \pmod{2}$
- $a_2 = 105 \cdot (1^{-1} \pmod{2}) = 105$
- ▶ $2 \cdot 5 \cdot 7 = 70 \equiv 1 \pmod{3}$
- $a_3 = 70 \cdot (1^{-1} \pmod{3}) = 70$
- $2 \cdot 3 \cdot 7 = 42 \equiv 2 \pmod{5}$
- $a_5 = 42 \cdot (2^{-1} \pmod{5}) = 126$
- $2 \cdot 3 \cdot 5 = 30 \equiv 2 \pmod{7}$
- $a_7 = 30 \cdot (2^{-1} \pmod{7}) = 120$

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 3 \pmod{7}
Found: a_2 = 105, a_3 = 70, a_5 = 126, a_7 = 120
```

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5},

x \equiv 3 \pmod{7}

Found: a_2 = 105, a_3 = 70, a_5 = 126, a_7 = 120

x = 105 + 2 \cdot 70 + 126 + 3 \cdot 120 = 731
```

```
x \equiv 1 \pmod{2}, x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5},

x \equiv 3 \pmod{7}

Found: a_2 = 105, a_3 = 70, a_5 = 126, a_7 = 120

x = 105 + 2 \cdot 70 + 126 + 3 \cdot 120 = 731

Hence x \equiv 101 \pmod{2 \cdot 3 \cdot 5 \cdot 7} = 210
```

Claim: Solution from CRT is unique (mod *N*).

Claim: Solution from CRT is unique (mod *N*).

- Suppose have two solutions x and y
- ▶ Let z = x y

Claim: Solution from CRT is unique (mod N).

- Suppose have two solutions x and y
- ▶ For each i, $z \equiv x y \equiv a_i a_i \equiv 0 \pmod{n_i}$
- ▶ So $n_i|z$ for each i

Claim: Solution from CRT is unique (mod N).

- Suppose have two solutions x and y
- ▶ For each i, $z \equiv x y \equiv a_i a_i \equiv 0 \pmod{n_i}$
- ▶ So $n_i | z$ for each i
- $ightharpoonup n_i$ s coprime, so N|z|

Claim: Solution from CRT is unique (mod N).

- Suppose have two solutions x and y
- ▶ Let z = x y
- ▶ For each i, $z \equiv x y \equiv a_i a_i \equiv 0 \pmod{n_i}$
- ▶ So $n_i|z$ for each i
- ▶ n_i s coprime, so N|z
- ▶ Hence, $x y \equiv z \equiv 0 \pmod{N}$
- ▶ Rearrange to $x \equiv y \pmod{N}$

Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod *N*).

- ▶ Number of possible a_i values: $\prod_i n_i$
- ▶ Number of possible *x* values: $N = \prod_i n_i$

Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod *N*).

- ▶ Number of possible a_i values: $\prod_i n_i$
- ▶ Number of possible *x* values: $N = \prod_i n_i$
- ▶ Each $x \in \mathbb{Z}_N$ corresponds to 1 set of a_i

Uniqueness Proof Is Not Unique

Claim: Solution from CRT is unique (mod *N*).

- ▶ Number of possible a_i values: $\prod_i n_i$
- ▶ Number of possible *x* values: $N = \prod_i n_i$
- ▶ Each $x \in \mathbb{Z}_N$ corresponds to 1 set of a_i
- ▶ If two x collide, $\exists a_i$ s w/o an x
- Contradicts CRT!

Break All The Things

Break time!

Break All The Things

Break time!

Today's Discussion Question: Should orange juice include pulp?

Let f be a function from D to R^1

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is *one-to-one* (injective) if $f(x) \neq f(x')$ for $x \neq x'$

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is *one-to-one* (injective) if $f(x) \neq f(x')$ for $x \neq x'$ *f* is *onto* (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

Examples:

• $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

- $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$
 - One-to-one, but not onto

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

- $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$
 - One-to-one, but not onto
- $f_2: \mathbb{R}^+ \to \mathbb{R}^+$ given by $f_2(x) = x^2$

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

- $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$
 - One-to-one, but not onto
- $f_2: \mathbb{R}^+ \to \mathbb{R}^+$ given by $f_2(x) = x^2$
 - Bijective

¹This is often denoted $f: D \rightarrow R$.

Let f be a function from D to R^1

f is one-to-one (injective) if $f(x) \neq f(x')$ for $x \neq x'$ f is onto (surjective) if $(\forall y \in R)(\exists x \in D)(f(x) = y)$ f is bijective if is one-to-one and onto

- $f_1: \mathbb{N} \to \mathbb{N}$ given by $f_1(x) = 2x$
 - One-to-one, but not onto
- $f_2: \mathbb{R}^+ \to \mathbb{R}^+$ given by $f_2(x) = x^2$
 - Bijective
- ▶ CRT gives bijection: $\mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k} \to \mathbb{Z}_N$

¹This is often denoted $f: D \rightarrow R$.

Alternative definition: f is bijective if has inverse

Alternative definition: *f* is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Alternative definition: *f* is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

▶ Suppose have *f*⁻¹

Alternative definition: *f* is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

- ▶ Suppose have f⁻¹
- ▶ f onto
 - ▶ $\forall y, f^{-1}(y) \in D \text{ st } f(f^{-1}(y)) = y$

Function Inverses

Alternative definition: *f* is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

- ▶ Suppose have f⁻¹
- ▶ f onto

▶
$$\forall y, f^{-1}(y) \in D \text{ st } f(f^{-1}(y)) = y$$

- ▶ f one-to-one:
 - Suppose f(x) = f(x')

Function Inverses

Alternative definition: *f* is bijective if has inverse

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (if):

- ▶ Suppose have f^{-1}
- ▶ f onto
 - ▶ $\forall y, f^{-1}(y) \in D \text{ st } f(f^{-1}(y)) = y$
- ▶ f one-to-one:
 - Suppose f(x) = f(x')
 - Then $x = f^{-1}(f(x)) = f^{-1}(f(x')) = x'$

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

Suppose f bijective

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

- Suppose f bijective
- ▶ Each $y \in R$ has unique $x \in D$ with f(x) = y

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

- Suppose f bijective
- ▶ Each $y \in R$ has unique $x \in D$ with f(x) = y
- Let $f^{-1}(y)$ be this x

Theorem: Let $f: D \to R$. f is bijective iff $\exists f^{-1}$ st $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Proof (only if):

- Suppose f bijective
- ▶ Each $y \in R$ has unique $x \in D$ with f(x) = y
- Let $f^{-1}(y)$ be this x

Note: f^{-1} is itself a bijection! Have $(f^{-1})^{-1} = f$

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Proof:

• Consider set $S_p = \{1, 2, 3, ..., p-1\}$

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

- Consider set $S_p = \{1, 2, 3, ..., p-1\}$
- ▶ Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

- Consider set $S_p = \{1, 2, 3, ..., p-1\}$
- ▶ Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- $\{1, 2, ..., p-1\} = \{a, 2a, ..., (p-1)a\} \pmod{p}$

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

- Consider set $S_p = \{1, 2, 3, ..., p-1\}$
- ▶ Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- $\{1, 2, ..., p-1\} = \{a, 2a, ..., (p-1)a\} \pmod{p}$
- ▶ Means $\prod_i i \equiv \prod_i ia \equiv a^{p-1} \prod_i i \pmod{p}$

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

- Consider set $S_p = \{1, 2, 3, ..., p-1\}$
- ▶ Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- $\{1, 2, ..., p-1\} = \{a, 2a, ..., (p-1)a\} \pmod{p}$
- ▶ Means $\prod_i i \equiv \prod_i ia \equiv a^{p-1} \prod_i i \pmod{p}$
- ▶ Multiply by $\prod_i i^{-1}$, get $1 \equiv a^{p-1} \pmod{p}$

To finish FLT proof, need to prove:

Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$ **Proof**:

▶ Need that for $x \in S_p$, $f(x) \in S_p$

To finish FLT proof, need to prove:

Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$ **Proof**:

- ▶ Need that for $x \in S_p$, $f(x) \in S_p$
 - If $x \in S_p$, $p \nmid x$
 - ▶ $p \not\mid a$ either, so $p \not\mid ax$
 - ▶ Hence $ax \pmod{p} \in S_p$

To finish FLT proof, need to prove:

Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$ **Proof**:

- ▶ Need that for $x \in S_p$, $f(x) \in S_p$
 - If $x \in S_p$, $p \nmid x$
 - ▶ $p \nmid a$ either, so $p \nmid ax$
 - ▶ Hence $ax \pmod{p} \in S_p$
- ▶ Inverse is $f^{-1}(y) = a^{-1}y \pmod{p}$

To finish FLT proof, need to prove:

Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$ **Proof**:

- ▶ Need that for $x \in S_p$, $f(x) \in S_p$
 - If $x \in S_p$, $p \nmid x$
 - p / a either, so p / ax
 - ▶ Hence $ax \pmod{p} \in S_p$
- ▶ Inverse is $f^{-1}(y) = a^{-1}y \pmod{p}$
 - $f^{-1}(f(x)) \equiv a^{-1}ax \equiv x \pmod{p}$
 - $f(f^{-1}(x)) \equiv aa^{-1}x \equiv x \pmod{p}$

Uses For Fermat

Speed up repeated-squaring algorithm

- Can't take modulus of exponent
- ▶ But if modulus prime, can take modulo p-1

Eg:
$$3^{661} = (3^6)^{110} \cdot 3 \equiv 3 \pmod{7}$$

Uses For Fermat

Speed up repeated-squaring algorithm

- Can't take modulus of exponent
- ▶ But if modulus prime, can take modulo p-1

Eg:
$$3^{661} = (3^6)^{110} \cdot 3 \equiv 3 \pmod{7}$$

Used critically in RSA cryptosystem! See more of this next week

Fin

Next time: cryptography!