
Lecture 8: Cryptography
Trust No One.

1 / 20

Cryptography: Basic Set Up

Alice Bob

Eve

Goal: system st Bob gets the message, Eve doesn’t

2 / 20

XOR
First scheme built on the XOR operation:

x y x ⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

Claim: (x ⊕ b)⊕ b = x for any bits x, b
b = 0 doesn’t flip, b = 1 flips twice

3 / 20

One-Time Pad
Alice wants to send an n-bit message m to Bob
Setup:

▶ A and B generate random n-bit pad p

Encryption:
▶ A creates ciphertext c = Ep(m) := m ⊕ p

Decryption:
▶ B decrypts m = Dp(c) := c ⊕ p

Does Bob receive the message correctly?
Can Eve read the message?

4 / 20

OTP Correctness
Claim: Bob always receives the message Alice sent.
Formally: ∀ messages m & pads p, Dp(Ep(m)) = m
Proof:

▶ Ep(m) = m ⊕ p, so Dp(Ep(m)) = (m ⊕ p)⊕ p
▶ Each bit of m XORed by same bit twice
▶ By previous claim, each bit of m stays the same
▶ Thus Dp(Ep(m)) = m

5 / 20

OTP Security
Claim: Any message possible just given ciphertext.
Formally: ∀ c & m, ∃ pad p st Ep(m) = c
Proof:

▶ Take p = c ⊕ m
▶ Then Ep(m) = p ⊕ m = (c ⊕ m)⊕ m = c

Intuition: set pi = 1 iff ith bit needs to flip
w/o pad, c says nothing about m!

6 / 20

Problems With OTP
How do Alice and Bob agree on their pad?
Can’t just send it over the channel!
Secure only for a single message — can’t reuse pad!
Solve these issues with public key cryptography
Idea: don’t assume shared secret key
Have separate private (only Bob) and public keys

7 / 20

“Textbook” RSA Protocol
Alice wants to send an n-bit message m to Bob
Setup:

▶ B chooses primes p, q st pq > 2n

▶ B chooses e st gcd(e, (p − 1)(q − 1)) = 1
▶ B publicizes N = pq and e
▶ B keeps p, q, d = e−1 (mod (p − 1)(q − 1))

Encryption:
▶ A encrypts c = EN,e(m) := me (mod N)

Decryption:
▶ B decrypts m = DN,d(c) := cd (mod N)

8 / 20

Fermat’s Little Theorem
Theorem: Let p be a prime and a ̸≡ 0 (mod p).
Then ap−1 ≡ 1 (mod p).
Proof:

▶ Consider set Sp = {1, 2, 3, ..., p − 1}
▶ Claim: f(x) = ax (mod p) is bijection Sp → Sp
▶ {1, 2, ..., p− 1} = {a, 2a, ..., (p− 1)a} (mod p)
▶ Means

∏
i i ≡

∏
i ia ≡ ap−1 ∏

i i (mod p)
▶ Multiply by

∏
i i−1, get 1 ≡ ap−1 (mod p)

9 / 20

Proof Of Claim
To finish FLT proof, need to prove:
Claim: f(x) = ax (mod p) is bijection Sp → Sp
Proof:

▶ Need that for x ∈ Sp, f(x) ∈ Sp
▶ If x ∈ Sp, p ̸ | x
▶ p ̸ | a either, so p ̸ | ax
▶ Hence ax (mod p) ∈ Sp

▶ Inverse is f−1(y) = a−1y (mod p)
▶ f−1(f(x)) ≡ a−1ax ≡ x (mod p)
▶ f(f−1(x)) ≡ aa−1x ≡ x (mod p)

10 / 20

RSA Correctness
Theorem: RSA protocol always decrypts correctly.
Formally: ∀ p, q, e, and m, DN,d(EN,e(m)) = m
Proof:

▶ Note: D(E(m)) = med mod N
▶ So just need to prove med ≡ m (mod N)
▶ ed = 1 + k(p − 1)(q − 1)
▶ So med = (m(p−1))k(q−1)m ≡ m (mod p)
▶ Similarly, have med ≡ m (mod q)
▶ med ≡ m (mod pq) is solution to those two
▶ CRT: m is only solution!

11 / 20

RSA Efficiency
Need protocol to run quickly
For security, p and q often 512 bits or more.
Setup: need to sample p and q (next slide)
Setup: need to invert e to get d

▶ EGCD runs in log time!

Encryption: need to find me (mod N)
▶ Repeated squaring runs in log time!

Decryption: need to find cd (mod N)
▶ Again use repeated squaring!

12 / 20

Sampling Primes
How to find primes p and q?
Can’t use the same ones for every key!
Theorem: Num primes ≤ n at least n

ln(n)

Means we can guess randomly until we find one!
Note: can quickly test primality

13 / 20

Time For A Break
4 minute breather!
Today’s Discussion Question:
What is the best kind of sandwich?

14 / 20

RSA Security
Correctness and efficiency great; need security too
Open problem in Computer Science!
Generally accepted as secure, but no proof (yet)
Can easily break if factor N into p and q
But naïve factoring too slow if p and q big
Note: can factor quickly on quantum computers
Not an immediate issue, but may be in the future!

15 / 20

Breaking Textbook RSA
Even if RSA secure, need careful implementation
Ex: suppose my credit card number is m
I send Amazon E(m) to make a purchase
Alice can’t recover m from E(m)...
...but what if she sends E(m) to Amazon?

16 / 20

Defense Against Replay Attacks
Last slide was a replay attack
Fix: pad message with a bunch of randomness
If Amazon gets same message twice, reject
Moral: even secure protocol can be vulnerable!

17 / 20

Digital Signature Scheme
Alternate use of RSA: proof of identity
“Amazon” wants to send me a message.
How do I know it’s actually Amazon?
Idea: Amazon sends s = md (mod N) along with m
I can verify se ≡ m (mod N)
Only Amazon can sign consistently!
Ability to sign ≡ ability to decrypt

18 / 20

Digital Signature Attack
Eve: I choose message to sign to prevent cheating!
Amazon: ok...
Eve: Sign reE(m) pls
Amazon: (reE(m))d (mod N)
What can Eve now do?
(reE(m))d ≡ redmed ≡ rm (mod N)
Uh oh — Eve knows r, so can invert to get m!
Moral: don’t sign arbitrary messages

19 / 20

Fin
Next time: polynomials!

20 / 20

