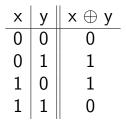
Lecture 8: Cryptography Trust No One.

Cryptography: Basic Set Up

Goal: system st Bob gets the message, Eve doesn't

XOR

First scheme built on the XOR operation:



Claim: $(x \oplus b) \oplus b = x$ for any bits x, b b = 0 doesn't flip, b = 1 flips twice

One-Time Pad

Alice wants to send an n-bit message m to Bob

- Setup:
 - ► A and B generate random *n*-bit pad *p*

Encryption:

• A creates ciphertext $c = E_p(m) := m \oplus p$

Decryption:

• B decrypts $m = D_p(c) := c \oplus p$

Does Bob receive the message correctly? Can Eve read the message?

OTP Correctness

Claim: Bob always receives the message Alice sent. Formally: \forall messages m & pads p, $D_p(E_p(m)) = m$ **Proof**:

- $E_{
 ho}(m)=m\oplus p$, so $D_{
 ho}(E_{
 ho}(m))=(m\oplus p)\oplus p$
- Each bit of m XORed by same bit twice
- By previous claim, each bit of m stays the same
- Thus $D_p(E_p(m)) = m$

OTP Security

Claim: Any message possible just given ciphertext. Formally: $\forall c \& m, \exists pad p \text{ st } E_p(m) = c$ **Proof**:

• Take
$$p = c \oplus m$$

• Then
$$E_p(m) = p \oplus m = (c \oplus m) \oplus m = c$$

Intuition: set $p_i = 1$ iff *i*th bit needs to flip

w/o pad, c says nothing about m!

Problems With OTP

How do Alice and Bob agree on their pad? Can't just send it over the channel!

Secure only for a single message — can't reuse pad!

Solve these issues with *public key cryptography*

Idea: don't assume shared secret key Have separate private (only Bob) and public keys

"Textbook" RSA Protocol

Alice wants to send an n-bit message m to Bob

Setup:

- B chooses primes p, q st $pq > 2^n$
- B chooses e st gcd(e, (p-1)(q-1)) = 1
- B publicizes N = pq and e
- ▶ B keeps p, q, $d = e^{-1} \pmod{(p-1)(q-1)}$

Encryption:

• A encrypts $c = E_{N,e}(m) := m^e \pmod{N}$

Decryption:

• B decrypts $m = D_{N,d}(c) := c^d \pmod{N}$

Fermat's Little Theorem

Theorem: Let p be a prime and $a \not\equiv 0 \pmod{p}$. Then $a^{p-1} \equiv 1 \pmod{p}$.

Proof:

- Consider set $S_p = \{1, 2, 3, ..., p 1\}$
- Claim: $f(x) = ax \pmod{p}$ is bijection $S_p \to S_p$
- $\{1, 2, ..., p-1\} = \{a, 2a, ..., (p-1)a\} \pmod{p}$
- Means $\prod_i i \equiv \prod_i ia \equiv a^{p-1} \prod_i i \pmod{p}$
- Multiply by $\prod_i i^{-1}$, get $1 \equiv a^{p-1} \pmod{p}$

Proof Of Claim

To finish FLT proof, need to prove: **Claim**: $f(x) = ax \pmod{p}$ is bijection $S_p \rightarrow S_p$ **Proof**:

Need that for x ∈ S_p, f(x) ∈ S_p
If x ∈ S_p, p ¼ x
p ∦ a either, so p ∦ ax
Hence ax (mod p) ∈ S_p
Inverse is f⁻¹(y) = a⁻¹y (mod p)
f⁻¹(f(x)) ≡ a⁻¹ax ≡ x (mod p)
f(f⁻¹(x)) ≡ aa⁻¹x ≡ x (mod p)

RSA Correctness

Theorem: RSA protocol always decrypts correctly. Formally: $\forall p, q, e, and m, D_{N,d}(E_{N,e}(m)) = m$ **Proof**:

• Note: $D(E(m)) = m^{ed} \mod N$

• So just need to prove $m^{ed} \equiv m \pmod{N}$

•
$$ed = 1 + k(p-1)(q-1)$$

- So $m^{ed} = (m^{(p-1)})^{k(q-1)}m \equiv m \pmod{p}$
- Similarly, have $m^{ed} \equiv m \pmod{q}$
- $m^{ed} \equiv m \pmod{pq}$ is solution to those two
- CRT: m is only solution!

RSA Efficiency

Need protocol to run quickly For security, p and q often 512 bits or more.

Setup: need to sample p and q (next slide) Setup: need to invert e to get d

EGCD runs in log time!

Encryption: need to find $m^e \pmod{N}$

Repeated squaring runs in log time!

Decryption: need to find $c^d \pmod{N}$

Again use repeated squaring!

Sampling Primes

How to find primes *p* and *q*? Can't use the same ones for every key!

Theorem: Num primes $\leq n$ at least $\frac{n}{\ln(n)}$

Means we can guess randomly until we find one! Note: can quickly test primality

Time For A Break

4 minute breather!

Today's Discussion Question: What is the best kind of sandwich?

RSA Security

Correctness and efficiency great; need security too

Open problem in Computer Science! Generally accepted as secure, but no proof (yet)

Can easily break if factor N into p and qBut naïve factoring too slow if p and q big

Note: can factor quickly on quantum computers Not an immediate issue, but may be in the future!

Breaking Textbook RSA

Even if RSA secure, need careful implementation

Ex: suppose my credit card number is mI send Amazon E(m) to make a purchase

Alice can't recover m from E(m)... ...but what if she sends E(m) to Amazon?

Defense Against Replay Attacks

Last slide was a *replay attack*

Fix: pad message with a bunch of randomness If Amazon gets same message twice, reject

Moral: even secure protocol can be vulnerable!

Digital Signature Scheme

Alternate use of RSA: proof of identity

"Amazon" wants to send me a message. How do I know it's actually Amazon?

Idea: Amazon sends $s = m^d \pmod{N}$ along with mI can verify $s^e \equiv m \pmod{N}$

Only Amazon can sign consistently! Ability to sign \equiv ability to decrypt

Digital Signature Attack

Eve: I choose message to sign to prevent cheating! **Amazon**: ok...

Eve: Sign $r^e E(m)$ pls **Amazon**: $(r^e E(m))^d \pmod{N}$

What can Eve now do? $(r^e E(m))^d \equiv r^{ed} m^{ed} \equiv rm \pmod{N}$

Uh oh — Eve knows r, so can invert to get m!

Moral: don't sign arbitrary messages

Fin

Next time: polynomials!