Lecture 8: Cryptography
Trust No One.
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Cryptography: Basic Set Up

Alice Bob

Goal: system st Bob gets the message, Eve doesn't

/20



XOR

First scheme built on the XOR operation:

XDy
0

R = O O X
= O R O

1
1
0



XOR

First scheme built on the XOR operation:

X|y|[|x®Dy
00 0
0|1 1
110 1
111 0

Claim: (x® b) @& b = x for any bits x, b



XOR

First scheme built on the XOR operation:

X|y|[|x®Dy
00 0
0|1 1
110 1
111 0

Claim: (x® b) @& b = x for any bits x, b
b = 0 doesn't flip, b =1 flips twice
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One-Time Pad

Alice wants to send an n-bit message m to Bob
Setup:
» A and B generate random n-bit pad p

Encryption:
» A creates ciphertext c= E,(m) :=m® p

Decryption:
» B decrypts m= D,(c) . =c®p

Does Bob receive the message correctly?
Can Eve read the message?
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OTP Correctness

Claim: Bob always receives the message Alice sent.
Formally: V messages m & pads p, Dp(Ep(m)) = m

Proof:
> Ep)(m) = m& p, so Dp(Ex(m)) = (m&p)&p
» Each bit of m XORed by same bit twice

» By previous claim, each bit of m stays the same
» Thus Dy(Ep(m)) = m
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OTP Security

Claim: Any message possible just given ciphertext.

Formally: V ¢ & m, 3 pad pst E,(m)=c¢
Proof:

» Take p=cPdH m
» Then E,(m)=p®&m=(cémd&m=c

Intuition: set p; = 1 iff ith bit needs to flip

w/o pad, c says nothing about m!
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Problems With OTP

How do Alice and Bob agree on their pad?
Can't just send it over the channel!

Secure only for a single message — can't reuse pad!
Solve these issues with public key cryptography

Idea: don't assume shared secret key
Have separate private (only Bob) and public keys
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“Textbook” RSA Protocol

Alice wants to send an n-bit message m to Bob

Setup:
» B chooses primes p, g st pg > 2"
» B chooses e st ged(e, (p—1)(g—1)) =1
» B publicizes N = pg and e
> Bkeeps p, g, d=e! (mod (p—1)(g—1))

Encryption:
» A encrypts ¢ = Ey(m) ;== m*® (mod N)

Decryption:
» B decrypts m = Dy 4(c) := c? (mod N)
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Fermat's Little Theorem

Theorem: Let p be a prime and a Z 0 (mod p).
Then 21 =1 (mod p).
Proof:

» Consider set 5, ={1,2,3,...,p— 1}
Claim: f{x) = ax (mod p) is bijection S, = S,
{1,2,...,p—1} ={a,2a,...,(p—1)a} (mod p)
Means [[;i=[[,ia= a* ' [],i (mod p)
Multiply by [],i™*, get 1 = 2"~ (mod p)

v

v
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Proof Of Claim

To finish FLT proof, need to prove:
Claim: f{x) = ax (mod p) is bijection S, = S,
Proof:

> Need that for x € Sp, f(x) € S,
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Proof Of Claim

To finish FLT proof, need to prove:

Claim: f{x) = ax (mod p) is bijection S, = S,

Proof:
» Need that for x€ S,, f(x) € S
» fxe Sy p fx
» p [ aeither, so p [ ax
» Hence ax (mod p) €S,
> Inverse is F1(y) = a_ y (mod p)

f1(f(x)) = atax = x (mod p)
f(f 1(x)) = aa x = x (mod p)

10/ 2
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RSA Correctness

Theorem: RSA protocol always decrypts correctly.

Formally: V p, g, e, and m, Dy 4(Ene(m)) = m

Proof:
> Note: D(E(m)) = m® mod N
So just need to prove m* = m (mod N)
ed=1+k(p—1)(g—1)
So m* = (mP~NK"Vm = m (mod p)

Similarly, have m** = m (mod q)

v

v
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RSA Correctness
Theorem: RSA protocol always decrypts correctly.
Formally: V p, g, e, and m, Dy 4(Ene(m)) = m

Proof:
> Note: D(E(m)) = m® mod N
> So just need to prove m* = m (mod N)
»ed=1+k(p—1)(g—1)
» So m* = (mlP~ K Dm=m (mod p)
> Similarly, have m* = m (mod gq)
» m* = m (mod pgq) is solution to those two

» CRT: mis only solution!
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RSA Efficiency

Need protocol to run quickly
For security, p and g often 512 bits or more.

Setup: need to sample p and g (next slide)
Setup: need to invert e to get d

» EGCD runs in log time!

Encryption: need to find m® (mod N)
» Repeated squaring runs in log time!

Decryption: need to find ¢ (mod N)
» Again use repeated squaring!

12/20
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Sampling Primes

How to find primes p and g7
Can't use the same ones for every key!

Theorem: Num primes < n at least ﬁ

Means we can guess randomly until we find onel!
Note: can quickly test primality

13 /20
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Time For A Break

4 minute breather!

Today’s Discussion Question:
What is the best kind of sandwich?
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RSA Security

Correctness and efficiency great; need security too

Open problem in Computer Science!
Generally accepted as secure, but no proof (yet)

Can easily break if factor N into p and g
But naive factoring too slow if p and g big

Note: can factor quickly on quantum computers
Not an immediate issue, but may be in the future!

15/ 2
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Breaking Textbook RSA

Even if RSA secure, need careful implementation

Ex: suppose my credit card number is m
| send Amazon E(m) to make a purchase

Alice can't recover m from E(m)...
...but what if she sends E(m) to Amazon?

OH ND,
NOT AGAIN.

16 /20
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Defense Against Replay Attacks
Last slide was a replay attack

Fix: pad message with a bunch of randomness
If Amazon gets same message twice, reject

Moral: even secure protocol can be vulnerable!

17/20
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Digital Signature Scheme
Alternate use of RSA: proof of identity

“Amazon” wants to send me a message.
How do | know it's actually Amazon?

Idea: Amazon sends s = m? (mod N) along with m
| can verify s = m (mod N)

Only Amazon can sign consistently!
Ability to sign = ability to decrypt

18 /20
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Digital Signature Attack

Eve: | choose message to sign to prevent cheating!
Amazon: ok...

Eve: Sign r°E(m) pls

Amazon: (r°E(m))? (mod N)

What can Eve now do?
(rPE(m))¥ = r*9¥m® = rm (mod N)

Uh oh — Eve knows r, so can invert to get m!

Moral: don't sign arbitrary messages

19 /2



Fin

Next time: polynomials!
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