Lecture 9: Polynomials
Why Only Have One Nomial?
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High school: p(x) = cgx? 4+ cg1x¥ 1+ ... + cx+ ¢
» d € N is the degree
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What Is a Polynomial?

High school: p(x) = cgx@ 4+ cg_1x¥ 1 + ... + ax+ ¢
» d € N is the degree
> C4, ..., Cp are the coefficients

This is coefficient representation
Need d + 1 coefficients to define deg d polynomial

Today: see value representation
Need d + 1 function values to define deg d poly

Today, prove that these are equivalent!
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Theorem: Let p(x), d(x) be polys. Then 3 g(x),
r(x) st p(x) = q(x)d(x) + r(x) and deg(r) < deg(p).

Same idea as elementary school long division!
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Polynomial Long Division

Theorem: Let p(x), d(x) be polys. Then 3 g(x),
r(x) st p(x) = q(x)d(x) + r(x) and deg(r) < deg(p).

Same idea as elementary school long division!

X +3x—1
X —1)x+33—2x2+0x+4
—(X* + 03— XP)
3 — xX* 4 0x
—(3x* + 0x% — 3x)
—x* 4+ 3x+4
—(—x* + 0x+ 1)

3x+3
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Factoring Roots
Lemma: Suppose p(a) = 0. Then can write
p(x) = (x — a)q(x) st deg(q) = deg(p) — 1.
Proof:
» Divide p(x) by (x — a) as before
> p(x) = (x = a)a(x) + r(x)
> 0=p(a) = (a—a)q(a) + r(a) = r(a)



Factoring Roots

Lemma: Suppose p(a) = 0. Then can write
p(x) = (x = a)q(x) st deg(q) = deg(p) — 1.
Proof:

» Divide p(x) by (x — a) as before
p(x) = (x— 2)a(x) + ¥
0 = p(a) = (a— 2)q(a) + () = r(2)
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Only possibility: r(x) = 0!
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Factoring Roots

Lemma: Suppose p(a) = 0. Then can write
p(x) = (x = a)q(x) st deg(q) = deg(p) — 1.
Proof:

Divide p(x) by (x — a) as before

p(x) = (x— 2)a(x) + ¥

0 = p(a) = (a— 2)q(a) + () = r(2)
deg(r) < deg(x — a) =1, so r(x) a constant
Only possibility: r(x) = 0!

Thus p(x) = (x— 2)q(x)

v

v v v v v
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Number of Groots
Theorem: Non-zero deg d poly has < d roots.

Proof:
» By induction on d.

v

Base Case (d = 0): constant poly, no roots
Suppose true for degree k

Let p(x) have degree k+ 1

If p has no roots, done

v

v

v
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Theorem: Non-zero deg d poly has < d roots.

Proof:
» By induction on d.

v

Base Case (d = 0): constant poly, no roots
Suppose true for degree k

Let p(x) have degree k+ 1

If p has no roots, done

v

v

v

Else can factor as (x — a)q(x)
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Number of Groots
Theorem: Non-zero deg d poly has < d roots.

Proof:
» By induction on d.

v

Base Case (d = 0): constant poly, no roots
Suppose true for degree k

Let p(x) have degree k+ 1

If p has no roots, done

v

v

v

Else can factor as (x — a)q(x)

v

1 root from (x — a), < k from g(x)
Total < k+ 1 roots

v

v
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Proof:
» Let p(x) and g(x) be distinct, deg < d

p(x) = q(x) iff p(x) — q(x) =0
Note: p — g is non-zero, deg < d
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Limited Agreement

Theorem: Distinct deg d polys agree on < d points
Proof:

» Let p(x) and g(x) be distinct, deg < d

> p(x) = q(x) iff p(x) — q(x) =0

» Note: p— g is non-zero, deg < d

» So p— g has < d roots

» Means < d values of x st p(x) = g(x)!

Means d + 1 values enough to define polynomial

But do any d+ 1 points work?



First Interpolation
Want degree 1 poly through (4,2) and (7,0)
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First Interpolation
Want degree 1 poly through (4,2) and (7,0)

Recall: slope = rise/run

Here: slope = (0 —2)/(7 — 4) = _%

So p(x) = —5x+ ¢
Choose c st p(4) —2.4+4c=2

So c—2+3 134

So —§x+ ? is unique degree 1 poly!
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Bigger Interpolation

Want degree 2 through (0,—-1), (2,9), (-1, -3)
Rise/run trick only works for degree 1...

Ao(X) = —%Xz + %X—F 1

Ay(x) = %xz + %x

A 4(x) = %xz — %x
Take p(x) = —1A¢(x) + 9A2(x) — 3A_1(x)

Works out to (3 +3 — 1) + (—3 + 2 +2)x— 1
So p(x) = +3x—1

How do we find the A;s?
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Finidng A
Goal: Ao(X) st AO(O) =1, A0(2) = Ao(—l) =0

Last two easy: take qo(x) = (x — 2)(x+ 1)
Note: go(0) = (0 —2)(0+ 1) = —2
Take Ag(x) = —3qo(x)

Gives Ag(x) = —2(x —x—2) = =22 + 3x+ 1

For 2, take q2(x) = (x — 0)(x+ 1) = ¥* + x
Az(x):%:%“:%szr%x
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Finidng A
Goal: Ao(X) st AO(O) =1, A0(2) = Ao(—l) =0

Last two easy: take qo(x) = (x — 2)(x+ 1)
Note: go(0) = (0 —2)(0+ 1) = —2
Take Ag(x) = —3qo(x)

Gives Ag(x) = —2(x —x—2) = =22 + 3x+ 1

For 2, take q2(x) = (x — 0)(x+ 1) = ¥* + x

Ds(x) = ngg X28LX = 2% + £x

For —1, takeq 1—(x—0)(x 2) = X — 2x
1(x) = 2x — 1xz——x




Lagrange Interpolation

Theorem: Given points (x1, y1), ..., (Xd+1, Yg+1), €an
construct deg (at most) d poly through them.
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Lagrange Interpolation

Theorem: Given points (x1, y1), ..., (Xd+1, Yg+1), €an
construct deg (at most) d poly through them.
Proof:
» Suppose have polys Aj(x) st
> A,‘(X,') =1
» Af(xj)) =0 for j# i
» Take p(x) = y1A1(x) + ... + yar1Qqgr1(x)
» To construct A,(x):
> Take gi(x) = [1.(x — x)
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Lagrange Interpolation

Theorem: Given points (x1, y1), ..., (Xd+1, Yg+1), €an
construct deg (at most) d poly through them.
Proof:
» Suppose have polys Aj(x) st
> A,‘(X,') =1
» Af(xj)) =0 for j# i
» Take p(x) = y1A1(x) + ... + yar1Qqgr1(x)
» To construct A,(x):
> Take gi(x) = [1.(x — x)

> Let A( )_ q/(()):l))

Note similarities to CRT!
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Lagrange Example
Find deg 2 poly through (1,6), (6,1), (7,0)

x—6)(x—7
Ai(x) = E1 6%%1 7;: 1X2__ +_
_ O 1 8 7
ANo(X) = 567 = € T ax— ¢
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Lagrange Example
Find deg 2 poly through (1, 6), (6, 1), (7,0)

x—6)(x—7
Al(X) —gl 6;%1 7; = 1X2 — 3A -|— an
A6(X) (6—1)(6—7) 5 + EX 5
x—1)(x—6 1
A7(X) - E?—lgg7—6g - 6X2 gX 1
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Lagrange Example
Find deg 2 poly through (1,6), (6,1), (7,0)

x—6)(x—7
Ai(x) = El 6%%1 732 3¢~ %X T 3%
_ O=D0=7) 1 8 7
Bo(¥) = e = —5X T 85X 5
x—1)(x—6 1
Ar(x) = 57_1%7_6% §< — %XJF !

So take p(x) = 6A;1(x) + 1Ag(x) + 0A7(x)
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Lagrange Example
Find deg 2 poly through (1, 6), (6, 1), (7,0)
Ay(x) = 80D — 1o By 42

(1-6)(1-7)
_ D=7 8 7
As(X) = s167) = —5X2 TsX s
x—1)(x—6 1
A7(x) = 57_1%7_6% 6X2 - %XJF 1

So take p(x) = 6A;1(x) + 1Ag(x) + 0A7(x)
6A1(x) = %xz — %X—f— %
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Lagrange Example
Find deg 2 poly through (1, 6), (6, 1), (7,0)
Ay(x) = 80D — 1o By 42

(1-6)(1-7)
_ D=7 8 7
As(X) = s167) = —5X2 TsX s
x—1)(x—6 1
A7(x) = E?—l%%?—% 6X2 - %XJF 1

So take p(x) = 6A;1(x) + 1Ag(x) + 0A7(x)
6A1(x) = %xz — %X—f— %
p(x) = (32 — 2x+ B)+ (-2 + x— 1) = —x+7

11/2



Lagrange Example
Find deg 2 poly through (1,6), (6,1), (7,0)

x—6)(x—7
Di(x) = GFPY = §5x2 — Px+ §
_ D=7 8 7
No(x) = 5167 = —5X T X~ 3
x—1)(x—6 1
A7(x) = 57_1%7_6% £ —Ix+1

So take p(x) = 6A;1(x) + 1Ag(x) + 0A7(x)
6A1(x) = %xz — %X—f— %
p(x) = (32 — 2x+ B)+ (-2 + x— 1) = —x+7

Notice: doesn’t have to be degree exactly 2!
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Break time! Talk to your neighbors!
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Break

Break time! Talk to your neighbors!

Today’s Discussion Question:
What is your favorite breakfast food?



Get Real

So far, working with polynomials in R
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Get Real

So far, working with polynomials in R

Calculations tend to get messy
Issues with finite precision on computers!

What properties of R did we actually use?
» Ability to add, multiply, subtract
» Division by non-zero numbers
» Product of non-zero numbers is non-zero

These properties hold in any field
Numbers modulo a prime is a field!

13/2



Finite Fields

Numbers mod p often denoted GF(p)®

L“GF"” stands for “Galois Field”
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Finite Fields
Numbers mod p often denoted GF(p)*

Note: is important that p is a prime!

Ex: Consider (x — 2)(x — 3) modulo 6
» Degree two polynomial
» But four roots: 0, 2, 3, 5!

Ex: No deg 1 poly through (0,0) and (3,1) mod 6
» Go through (0,0) means ¢ =0
» Go through (3,1) means ¢; -3 =1 (mod 6)

L“GF"” stands for “Galois Field"

14 /2



Finite Field Lagrange
Want deg 2 poly mod 7 through (0, 3), (2,2), (3,0)
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Finite Field Lagrange
Want deg 2 poly mod 7 through (0, 3), (2,2), (3,0)

go(x) = (x—=2)(x—3)=x* —5x+6=x+2x+6
q0(0) = 6, s0 qo(0) ' =6 (mod 7)
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gp(x) = (x—2)(x—3)=x—5x+6=x>+2x+6
q0(0) =6, so qo(0) ' =6 (mod 7)
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Finite Field Lagrange
Want deg 2 poly mod 7 through (0, 3), (2,2), (3,0)

gp(x) = (x—2)(x—3)=x—5x+6=x>+2x+6
q0(0) =6, so qo(0) ' =6 (mod 7)
Do(x) = 6(x% +2x+6) = 6x% +5x+ 1 (mod 7)

q(x) = (x—0)(x—3) = x* —3x= x* + 4x (mod 7)
702(2) = —2=5 (mod 7), so q2(2) "} =3 (mod 7)
Ao(x) = 3(x% + 4x) = 3x% + 5x (mod 7)

Don't have to calculate Az(x) — multiplied by zero!
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Finite Field Lagrange
Want deg 2 poly mod 7 through (0, 3), (2,2), (3,0)
gp(x) = (x—2)(x—3)=x—5x+6=x>+2x+6

q0(0) =6, so qo(0) ' =6 (mod 7)
Do(x) = 6(x% +2x+6) = 6x% +5x+ 1 (mod 7)

q(x) = (x—0)(x—3) = x* —3x= x* + 4x (mod 7)
702(2) = —2=5 (mod 7), so q2(2) "} =3 (mod 7)
Ao(x) = 3(x% + 4x) = 3x% + 5x (mod 7)

Don't have to calculate Az(x) — multiplied by zero!

Take p(x) = 3A¢(x) + 2A,(x) + 0A3(x)
= (4 +x+3) + (6x° +3x) = 3 +4x+3 (mod 7)

15/2
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Counting Polynomials

Suppose | know p(1) =5 and p(2) = 3.
How many deg < 2 polynomials could p be?

Polynomial fully defined by 3rd point
Equiv: how many possible values for p(0)?

In R, infinitely many...not too interesting
In GF(q), g possibilities!

16/2
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Shhh, It's a Secret

The password to my computer is 1234,

If something bad happens, want staff to unlock it
But dangerous to just give out my password

Idea: if k of n staff members agree, can unlock
If fewer than k, unable to

Shamir’s Secret Sharing Scheme:
» Choose random deg k — 1 poly st p(0) = 1234

» Can choose points and interpolate
» Or can choose coefficients

» Distribute p(i) to ith staff member (1 < /i< n)

17/2
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Shhh-amir Properties
Claim: k staff members can recover password

Proof:
» Any k points on p fully define polynomial
» Use Lagrange to interpolate; evaluate p(0)

Claim: Only k — 1 staff members get nothing

Proof:
» Have kK — 1 known points
> Any value of p(0) gives potential polynomial
» All values consistent with known points!

18/2
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Suppose my secret is 4.
Want to make sure any 3 of the 12 TAs can find it.
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Secret Sharing Example

Suppose my secret is 4.
Want to make sure any 3 of the 12 TAs can find it.

What prime should | work modulo?
Eventually give out p(1), p(2), ..., p(12)
To ensure distinct, need prime 13 or larger!
(Also need prime bigger than secret)

Choose polynomial x* + 4 (mod 13)
Give out p(1) =5, p(2) =38, ..., p(12) =5

Exercise: choose 3 pts, check Lagrange gives x° + 4
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Hierarchical Secret Sharing

Can modify protocol for more complicated setups
Ex: Need Elizabeth + k TAs to unlock

Idea: have nested secret sharing
» Password is root of degree 1 poly p(x)
» p(1) given to Elizabeth
» p(2) is secret shared by TAs!
» Give TAs points on g(x) st g(0) = p(2)

See more examples of this in discussion



Fin

Next time: error correcting codes!



