
Lecture 9: Polynomials
Why Only Have One Nomial?
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What Is a Polynomial?
High school: p(x) = cdxd + cd−1xd−1 + ...+ c1x+ c0

▶ d ∈ N is the degree
▶ cd, ..., c0 are the coefficients

This is coefficient representation
Need d + 1 coefficients to define deg d polynomial
Today: see value representation
Need d + 1 function values to define deg d poly
Today, prove that these are equivalent!
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Polynomial Long Division
Theorem: Let p(x), d(x) be polys. Then ∃ q(x),
r(x) st p(x) = q(x)d(x) + r(x) and deg(r) < deg(p).

Same idea as elementary school long division!

x2 − 1
)
x4 + 3x3 − 2x2 + 0x + 4

−(x4 + 0x3 − 1x2)

3x3 − 1x2 + 0x
−(3x3 + 0x2 − 3x)

−x2 + 3x + 4
−(−x2 + 0x + 1)

3x + 3
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Factoring Roots
Lemma: Suppose p(a) = 0. Then can write
p(x) = (x − a)q(x) st deg(q) = deg(p)− 1.

Proof:
▶ Divide p(x) by (x − a) as before
▶ p(x) = (x − a)q(x) + r(x)
▶ 0 = p(a) = (a − a)q(a) + r(a) = r(a)
▶ deg(r) < deg(x − a) = 1, so r(x) a constant
▶ Only possibility: r(x) = 0!
▶ Thus p(x) = (x − a)q(x)
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Number of Groots
Theorem: Non-zero deg d poly has ≤ d roots.

Proof:
▶ By induction on d.
▶ Base Case (d = 0): constant poly, no roots
▶ Suppose true for degree k
▶ Let p(x) have degree k + 1
▶ If p has no roots, done
▶ Else can factor as (x − a)q(x)
▶ 1 root from (x − a), ≤ k from q(x)
▶ Total ≤ k + 1 roots
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Limited Agreement
Theorem: Distinct deg d polys agree on ≤ d points

Proof:
▶ Let p(x) and q(x) be distinct, deg ≤ d
▶ p(x) = q(x) iff p(x)− q(x) = 0
▶ Note: p − q is non-zero, deg ≤ d
▶ So p − q has ≤ d roots
▶ Means ≤ d values of x st p(x) = q(x)!

Means d + 1 values enough to define polynomial
But do any d + 1 points work?
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First Interpolation
Want degree 1 poly through (4, 2) and (7, 0)

Recall: slope = rise/run
Here: slope = (0 − 2)/(7 − 4) = −2

3

So p(x) = −2
3x + c

Choose c st p(4) = −2
3 · 4 + c = 2

So c = 2 + 8
3 = 14

3

So −2
3x + 14

3 is unique degree 1 poly!
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Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)

Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1

∆2(x) = 1
6x2 + 1

6x
∆−1(x) = 1

3x2 − 2
3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)

Works out to (1
2 +

3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1

How do we find the ∆is?

8 / 21



Bigger Interpolation
Want degree 2 through (0,−1), (2, 9), (−1,−3)
Rise/run trick only works for degree 1...

∆0(x) = −1
2x2 + 1

2x + 1
∆2(x) = 1

6x2 + 1
6x

∆−1(x) = 1
3x2 − 2

3x

Take p(x) = −1∆0(x) + 9∆2(x)− 3∆−1(x)
Works out to (1

2 +
3
2 − 1)x2 + (−1

2 +
3
2 + 2)x − 1

So p(x) = x2 + 3x − 1
How do we find the ∆is?

8 / 21



Finidng ∆
Goal: ∆0(x) st ∆0(0) = 1, ∆0(2) = ∆0(−1) = 0

Last two easy: take q0(x) = (x − 2)(x + 1)
Note: q0(0) = (0 − 2)(0 + 1) = −2
Take ∆0(x) = −1

2q0(x)
Gives ∆0(x) = −1

2(x2 − x − 2) = −1
2x2 + 1

2x + 1
For 2, take q2(x) = (x − 0)(x + 1) = x2 + x
∆2(x) = q2(x)

q2(2) =
x2+x

6 = 1
6x2 + 1

6x

For −1, take q−1 = (x − 0)(x − 2) = x2 − 2x
∆−1(x) = q−1(x)

q−1(−1) =
x2−2x

3 = 1
3x2 − 2

3x
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Lagrange Interpolation
Theorem: Given points (x1, y1), ..., (xd+1, yd+1), can
construct deg (at most) d poly through them.

Proof:
▶ Suppose have polys ∆i(x) st

▶ ∆i(xi) = 1
▶ ∆i(xj) = 0 for j ̸= i

▶ Take p(x) = y1∆1(x) + ...+ yd+1∆d+1(x)
▶ To construct ∆i(x):

▶ Take qi(x) =
∏

j̸=i(x − xj)

▶ Let ∆i(x) = qi(x)
qi(xi)

Note similarities to CRT!
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Lagrange Example
Find deg 2 poly through (1, 6), (6, 1), (7, 0)

∆1(x) = (x−6)(x−7)
(1−6)(1−7) =

1
30x2 − 13

30x + 42
30

∆6(x) = (x−1)(x−7)
(6−1)(6−7) = −1

5x2 + 8
5x − 7

5

∆7(x) = (x−1)(x−6)
(7−1)(7−6) =

1
6x2 − 7

6x + 1

So take p(x) = 6∆1(x) + 1∆6(x) + 0∆7(x)
6∆1(x) = 1

5x2 − 13
5 x + 42

5
p(x) = (1

5x2 − 13
5 x+ 42

5 )+ (−1
5x2 + 8

5x− 7
5) = −x+ 7

Notice: doesn’t have to be degree exactly 2!
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Break
Break time! Talk to your neighbors!

Today’s Discussion Question:
What is your favorite breakfast food?
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Get Real
So far, working with polynomials in R

Calculations tend to get messy
Issues with finite precision on computers!
What properties of R did we actually use?

▶ Ability to add, multiply, subtract
▶ Division by non-zero numbers
▶ Product of non-zero numbers is non-zero

These properties hold in any field
Numbers modulo a prime is a field!
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Finite Fields
Numbers mod p often denoted GF(p)1

Note: is important that p is a prime!
Ex: Consider (x − 2)(x − 3) modulo 6

▶ Degree two polynomial
▶ But four roots: 0, 2, 3, 5!

Ex: No deg 1 poly through (0, 0) and (3, 1) mod 6
▶ Go through (0, 0) means c0 = 0
▶ Go through (3, 1) means c1 · 3 ≡ 1 (mod 6)

1“GF” stands for “Galois Field”
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Finite Field Lagrange
Want deg 2 poly mod 7 through (0, 3), (2, 2), (3, 0)

q0(x) = (x − 2)(x − 3) = x2 − 5x + 6 ≡ x2 + 2x + 6
q0(0) = 6, so q0(0)−1 ≡ 6 (mod 7)
∆0(x) ≡ 6(x2 + 2x + 6) ≡ 6x2 + 5x + 1 (mod 7)
q2(x) = (x− 0)(x− 3) = x2 − 3x ≡ x2 + 4x (mod 7)
q2(2) = −2 ≡ 5 (mod 7), so q2(2)−1 ≡ 3 (mod 7)
∆2(x) ≡ 3(x2 + 4x) ≡ 3x2 + 5x (mod 7)
Don’t have to calculate ∆3(x) — multiplied by zero!
Take p(x) = 3∆0(x) + 2∆2(x) + 0∆3(x)
≡ (4x2 + x+ 3)+ (6x2 + 3x) ≡ 3x2 + 4x+ 3 (mod 7)
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Counting Polynomials
Suppose I know p(1) = 5 and p(2) = 3.
How many deg ≤ 2 polynomials could p be?

Polynomial fully defined by 3rd point
Equiv: how many possible values for p(0)?
In R, infinitely many...not too interesting
In GF(q), q possibilities!
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Shhh, It’s a Secret
The password to my computer is 1234.

If something bad happens, want staff to unlock it
But dangerous to just give out my password
Idea: if k of n staff members agree, can unlock
If fewer than k, unable to
Shamir’s Secret Sharing Scheme:

▶ Choose random deg k − 1 poly st p(0) = 1234
▶ Can choose points and interpolate
▶ Or can choose coefficients

▶ Distribute p(i) to ith staff member (1 ≤ i ≤ n)
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Shhh-amir Properties
Claim: k staff members can recover password

Proof:
▶ Any k points on p fully define polynomial
▶ Use Lagrange to interpolate; evaluate p(0)

Claim: Only k − 1 staff members get nothing
Proof:

▶ Have k − 1 known points
▶ Any value of p(0) gives potential polynomial
▶ All values consistent with known points!
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Secret Sharing Example
Suppose my secret is 4.
Want to make sure any 3 of the 12 TAs can find it.

What prime should I work modulo?
Eventually give out p(1), p(2), ..., p(12)
To ensure distinct, need prime 13 or larger!
(Also need prime bigger than secret)
Choose polynomial x2 + 4 (mod 13)
Give out p(1) = 5, p(2) = 8, ..., p(12) = 5
Exercise: choose 3 pts, check Lagrange gives x2 + 4
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Hierarchical Secret Sharing
Can modify protocol for more complicated setups

Ex: Need Elizabeth + k TAs to unlock
Idea: have nested secret sharing

▶ Password is root of degree 1 poly p(x)
▶ p(1) given to Elizabeth
▶ p(2) is secret shared by TAs!
▶ Give TAs points on q(x) st q(0) = p(2)

See more examples of this in discussion
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Fin
Next time: error correcting codes!
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