Bonus Lecture 1: Formal Proof Systems

Because Formalism Improves Everything

Proofs so far designed to be human-readable

- Lots of fluff
- Quote simple results without proving
- etc

Proofs so far designed to be human-readable

- Lots of fluff
- Quote simple results without proving
- etc

```
Hard for a computer to understand :(
Hard to prove things about proofs :(
```

Proofs so far designed to be human-readable

- Lots of fluff
- Quote simple results without proving
- etc

```
Hard for a computer to understand :(
Hard to prove things about proofs :(
```

Formalizing a proof system addresses these issues But at the cost of readability, length

Proofs so far designed to be human-readable

- Lots of fluff
- Quote simple results without proving
- etc

```
Hard for a computer to understand :(
Hard to prove things about proofs :(
```

Formalizing a proof system addresses these issues But at the cost of readability, length

Today, focus on propositional logic (no quantifiers)

(1)
$$\varphi_1 \Rightarrow \varphi_1$$

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$
- (3) $\varphi_1 \Rightarrow [(\neg \varphi_1) \Rightarrow \varphi_2]$

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$
- (3) $\varphi_1 \Rightarrow [(\neg \varphi_1) \Rightarrow \varphi_2]$
- (4) $[(\neg \varphi_1) \Rightarrow \varphi_1] \Rightarrow \varphi_1$

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$
- (3) $\varphi_1 \Rightarrow [(\neg \varphi_1) \Rightarrow \varphi_2]$
- $(4) \ [(\neg \varphi_1) \Rightarrow \varphi_1] \Rightarrow \varphi_1$
- (5) $(\neg \varphi_1) \Rightarrow (\varphi_1 \Rightarrow \varphi_2)$

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$
- (3) $\varphi_1 \Rightarrow [(\neg \varphi_1) \Rightarrow \varphi_2]$
- $(4) \ [(\neg \varphi_1) \Rightarrow \varphi_1] \Rightarrow \varphi_1$
- (5) $(\neg \varphi_1) \Rightarrow (\varphi_1 \Rightarrow \varphi_2)$
- (6) $\varphi_1 \Rightarrow ([\neg \varphi_2] \Rightarrow [\neg (\varphi_1 \Rightarrow \varphi_2)])$

Need logical axioms to get anywhere System for today based on properties of \Rightarrow and \neg

- (1) $\varphi_1 \Rightarrow \varphi_1$
- (2) $\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_1)$
- (3) $\varphi_1 \Rightarrow [(\neg \varphi_1) \Rightarrow \varphi_2]$
- $(4) \ [(\neg \varphi_1) \Rightarrow \varphi_1] \Rightarrow \varphi_1$
- (5) $(\neg \varphi_1) \Rightarrow (\varphi_1 \Rightarrow \varphi_2)$
- (6) $\varphi_1 \Rightarrow ([\neg \varphi_2] \Rightarrow [\neg (\varphi_1 \Rightarrow \varphi_2)])$
- (7) $[\varphi_1 \Rightarrow (\varphi_2 \Rightarrow \varphi_3)] \Rightarrow [(\varphi_1 \Rightarrow \varphi_2) \Rightarrow (\varphi_1 \Rightarrow \varphi_3)]$

 φ s are any propositional formula

Why These Axioms?

Where did these precise axioms come from?

Why These Axioms?

Where did these precise axioms come from?

Turns out, sufficient for *completeness* "If it's true, we can prove it"

Why These Axioms?

Where did these precise axioms come from?

Turns out, sufficient for *completeness* "If it's true, we can prove it"

Could include more axioms, but more cumbersome

Start with set of givens Γ .

¹This is known as *Modus Ponens* because Latin

Start with set of givens Γ .

Proof is sequence of formulae $(\varphi_1, \varphi_2, ..., \varphi_n)$

¹This is known as *Modus Ponens* because Latin

Start with set of givens Γ .

Proof is sequence of formulae $(\varphi_1, \varphi_2, ..., \varphi_n)$ $\forall i$, must have one of:

- $ightharpoonup \varphi_i$ is an axiom
- $\triangleright \varphi_i$ in Γ
- ▶ $\exists j, k < i \text{ such that } \varphi_k \text{ is } \varphi_j \Rightarrow \varphi_i^1$

¹This is known as Modus Ponens because Latin

Start with set of givens Γ .

Proof is sequence of formulae $(\varphi_1, \varphi_2, ..., \varphi_n)$ $\forall i$, must have one of:

- $ightharpoonup \varphi_i$ is an axiom
- $ightharpoonup \varphi_i$ in Γ
- ▶ $\exists j, k < i \text{ such that } \varphi_k \text{ is } \varphi_j \Rightarrow \varphi_i^1$

Say Γ proves φ $(\Gamma \vdash \varphi)$ if \exists a proof with $\varphi_n = \varphi$

¹This is known as *Modus Ponens* because Latin

Start with $\Gamma = \{\neg(\neg P)\}$, prove P

Start with $\Gamma = {\neg(\neg P)}$, prove P

Proof:

- ¬(¬P)

(Axiom 5)

(Axiom 4)

 $(In \Gamma)$

Start with $\Gamma = \{\neg(\neg P)\}$, prove P

Proof:

 $(In \Gamma)$

Start with $\Gamma = \{\neg(\neg P)\}$, prove P

Proof:

P

►
$$[\neg(\neg P)] \Rightarrow [(\neg P) \Rightarrow P]$$
 (Axiom 5)
► $[(\neg P) \Rightarrow P] \Rightarrow P$ (Axiom 4)
► $\neg(\neg P)$ (In Γ)
► $(\neg P) \Rightarrow P$ (Modus Ponens)

(Modus Ponens)

Start with $\Gamma = \{P, \neg P\}$, prove Q

Start with $\Gamma = \{P, \neg P\}$, prove Q

Proof:

- $P \Rightarrow [(\neg P) \Rightarrow Q]$
- ▶ P
- ¬P

(Axiom 3)

(*In* Γ)

(In Γ)

Start with
$$\Gamma = \{P, \neg P\}$$
, prove Q

Proof:

$$P ⇒ [(¬P) ⇒ Q]$$

$$P ⇒ (In Γ)$$

$$¬P ⇒ (In Γ)$$

$$(In Γ)$$

$$(¬P) ⇒ Q ⇒ (Modus Ponens)$$

$$Q ⇒ (Modus Ponens)$$

Start with $\Gamma = \{P, \neg P\}$, prove Q

Proof:

►
$$P \Rightarrow [(\neg P) \Rightarrow Q]$$
 (Axiom 3)
► P (In Γ)
► $\neg P$ (In Γ)
► $(\neg P) \Rightarrow Q$ (Modus Ponens)
► Q (Modus Ponens)

Wait — where did Q come from?

Start with $\Gamma = \{P, \neg P\}$, prove Q

Proof:

►
$$P \Rightarrow [(\neg P) \Rightarrow Q]$$
 (Axiom 3)
► P (In Γ)
► $\neg P$ (In Γ)
► $(\neg P) \Rightarrow Q$ (Modus Ponens)
► Q (Modus Ponens)

Wait — where did Q come from?

Principle of Explosion: If you start with a false statement, you can prove anything.

 Γ inconsistent if proves both φ and $\neg \varphi$ for some φ Claim: If Γ inconsistent, can prove anything!

 Γ inconsistent if proves both φ and $\neg \varphi$ for some φ Claim: If Γ inconsistent, can prove anything!

Why?

Consider proof of ψ for any ψ :

- Proof of φ
- Proof of $\neg \varphi$

 Γ inconsistent if proves both φ and $\neg \varphi$ for some φ Claim: If Γ inconsistent, can prove anything!

Why?

Consider proof of ψ for any ψ :

- Proof of φ
- Proof of $\neg \varphi$
- $\varphi \Rightarrow [(\neg \varphi) \to \psi]$

(Axiom 3)

 Γ inconsistent if proves both φ and $\neg \varphi$ for some φ Claim: If Γ inconsistent, can prove anything!

Why?

Consider proof of ψ for any ψ :

- Proof of φ
- Proof of $\neg \varphi$
- $(\neg \varphi) \rightarrow \psi$

 $\blacktriangleright \psi$

(Axiom 3)

(Modus Ponens)

(Modus Ponens)

Can't Get No...

How do we determine if proofs make sense?

Can't Get No...

How do we determine if proofs make sense? What should be provable?

Can't Get No...

How do we determine if proofs make sense? What should be provable?

Idea: back to formulae as functions

Can't Get No...

How do we determine if proofs make sense? What should be provable?

Idea: back to formulae as functions Consider inputs st all formulae in Γ are true If φ true on these, say Γ satisfies φ ($\Gamma \vDash \varphi$)

Can't Get No...

How do we determine if proofs make sense? What should be provable?

Idea: back to formulae as functions Consider inputs st all formulae in Γ are true If φ true on these, say Γ satisfies φ ($\Gamma \vDash \varphi$)

Ideally, Γ proves φ iff Γ satisfies φ

Theorem: If Γ proves φ , Γ satisfies φ

Theorem: If Γ proves φ , Γ satisfies φ

- ▶ Suppose \exists proof $(\varphi_1, \varphi_2, ..., \varphi_n = \varphi)$
- ▶ Prove Γ satisfies φ_i by induction on i

Theorem: If Γ proves φ , Γ satisfies φ

- ▶ Suppose \exists proof $(\varphi_1, \varphi_2, ..., \varphi_n = \varphi)$
- ▶ Prove Γ satisfies φ_i by induction on i
- BC (i = 1): Axiom (always true) or in Γ

Theorem: If Γ proves φ , Γ satisfies φ

- ▶ Suppose \exists proof $(\varphi_1, \varphi_2, ..., \varphi_n = \varphi)$
- Prove Γ satisfies φ_i by induction on i
- ▶ BC (i = 1): Axiom (always true) or in Γ
- IS: Same as above if axiom or in Γ
- ▶ Else have j, k < i st φ_k is $\varphi_j \Rightarrow \varphi_i$

Theorem: If Γ proves φ , Γ satisfies φ

- ▶ Suppose \exists proof $(\varphi_1, \varphi_2, ..., \varphi_n = \varphi)$
- ▶ Prove Γ satisfies φ_i by induction on i
- ▶ BC (i = 1): Axiom (always true) or in Γ
- IS: Same as above if axiom or in Γ
- ▶ Else have j, k < i st φ_k is $\varphi_j \Rightarrow \varphi_i$
- φ_j and φ_k satisfied by IH
- ▶ Those both true means φ_i true as well!

Theorem: If Γ proves φ , Γ satisfies φ

Proof:

- ▶ Suppose \exists proof $(\varphi_1, \varphi_2, ..., \varphi_n = \varphi)$
- ▶ Prove Γ satisfies φ_i by induction on i
- ▶ BC (i = 1): Axiom (always true) or in Γ
- IS: Same as above if axiom or in Γ
- ▶ Else have j, k < i st φ_k is $\varphi_j \Rightarrow \varphi_i$
- φ_j and φ_k satisfied by IH
- ▶ Those both true means φ_i true as well!

Other direction also true, but much more difficult

But Wait!

What about inconsistent Γ ? Proves everything!

But Wait!

What about inconsistent Γ ? Proves everything!

If Γ inconsistent, no input makes all formulae true

• Recall $\Gamma = \{P, \neg P\}$ from before

But Wait!

What about inconsistent Γ ? Proves everything!

If Γ inconsistent, no input makes all formulae true

• Recall $\Gamma = \{P, \neg P\}$ from before

So for any φ , Γ satisfies φ vacuously Not a counterexample after all

Fin

If you found this interesting, consider Math 125A!