Bonus Lecture 1: Formal Proof
Systems

Because Formalism Improves Everything
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Why Formal Proofs?

Proofs so far designed to be human-readable
» Lots of fluff
» Quote simple results without proving
» etc
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Why Formal Proofs?

Proofs so far designed to be human-readable
» Lots of fluff

» Quote simple results without proving
» etc

Hard for a computer to understand :(
Hard to prove things about proofs :(

Formalizing a proof system addresses these issues
But at the cost of readability, length

Today, focus on propositional logic (no quantifiers)
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Need logical axioms to get anywhere
System for today based on properties of = and —

(1) v1= 1

(2) 1= (2= 1)

(3) 1= [(—¢1) = ¢2]
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Axioms

Need logical axioms to get anywhere
System for today based on properties of = and —

(1) v1= 1

(2) 1= (p2 = 1)

(3) 1= [(—¢1) = ¢2]

(4) [(—¢1) = 1] = w1

(5) (m¢1) = (1= ¥2)

6) 1= ([l = [ = 22)])

(7) [e1= (2 = w3)] = [(p1 = 2) = (1 = ¥3)]

s are any propositional formula
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Why These Axioms?

Where did these precise axioms come from?

Turns out, sufficient for completeness
“If it's true, we can prove it"”

Could include more axioms, but more cumbersome
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Start with set of givens I'.

1This is known as Modus Ponens because Latin
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Formal Proofs, Formally
Start with set of givens I'.

Proof is sequence of formulae (1, @2, ..., )
Vi, must have one of:

> (pj IS an axiom
> QO in r
» Jj, k < isuch that ¢y is ¢; = 90,'1

Say I proves ¢ (' ) if 3 a proof with ¢, = ¢

IThis is known as Modus Ponens because Latin
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An Example Proof
Start with ' = {—=(=P)}, prove P

Proof:
> [-(=P)] = [(—P) = F]| (Axiom 5)
> [(=P)= P =P (Axiom 4)
> —|(—|P) (/n F)
» (-P)=P (Modus Ponens)

» P (Modus Ponens)
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Inconsistent Beginnings...
Start with ' = {P, =P}, prove Q

Proof:
» P=[(=P) = Q) (Axiom 3)
> P (InT)
» =P (InT)
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Inconsistent Beginnings...
Start with ' = {P, =P}, prove Q

Proof:
» P=[(=P) = Q) (Axiom 3)
> P (InT)
» =P (InT)
» (-P) = Q (Modus Ponens)
» Q (Modus Ponens)

Wait — where did @ come from?

Principle of Explosion: If you start with a false
statement, you can prove anything.
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[" inconsistent if proves both ¢ and —¢ for some ¢
Claim: If I inconsistent, can prove anything!
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Consider proof of ¢ for any :
» Proof of ¢
» Proof of —p
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..Lead Anywhere

[" inconsistent if proves both ¢ and —¢ for some ¢
Claim: If I inconsistent, can prove anything!

Why?

Consider proof of ¢ for any :
» Proof of ¢
» Proof of —p
= [(—p) = Y] (Axiom 3)
> () = Y (Modus Ponens)
> (Modus Ponens)
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Can't Get No...

How do we determine if proofs make sense?
What should be provable?

Idea: back to formulae as functions
Consider inputs st all formulae in I are true
If © true on these, say I satisfies ¢ (I F )

Ideally, I' proves ¢ iff [ satisfies
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We're Halfway There

Theorem: If [ proves ¢, [ satisfies ¢

Proof:

> Suppose 3 proof (41,2, ..., pn = )
Prove I satisfies ¢; by induction on j

v

v

BC (i =1): Axiom (always true) or in I

v

IS: Same as above if axiom or in

v

Else have j, k < ist o is p; = ;
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We're Halfway There

Theorem: If [ proves ¢, [ satisfies ¢

Proof:

>

>

>

Suppose 3 proof (@1, 2, ... 0 = @)
Prove I satisfies ¢; by induction on j

BC (i =1): Axiom (always true) or in I
IS: Same as above if axiom or in I

Else have j, k < ist o is p; = ;
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We're Halfway There

Theorem: If [ proves ¢, [ satisfies ¢

Proof:

>

>

>

Suppose 3 proof (@1, 2, ... 0 = @)
Prove I satisfies ¢; by induction on j

BC (i =1): Axiom (always true) or in I
IS: Same as above if axiom or in I

Else have j, k < ist o is p; = ;

¢; and @y satisfied by IH

Those both true means ¢; true as well!

Other direction also true, but much more difficult
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But Wait!

What about inconsistent ['? Proves everything!

If I inconsistent, no input makes all formulae true
» Recall T = {P, =P} from before

So for any ¢, I satisfies ¢ vacuously
Not a counterexample after all
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Fin

If you found this interesting, consider Math 125A!
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