
Bonus Lecture 2: Euler’s Totient
Theorem

Primes Are Overrated Anyways
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Recall From the Future...
“Recall” Fermat’s Little Theorem:
Theorem: Let p be prime and a ̸≡ 0 (mod p).
Then ap−1 ≡ 1 (mod p).

Proof:
▶ f(x) = ax (mod p) is biject. on {1, 2, ..., p − 1}
▶ So {1, ..., p − 1} = {a, ..., (p − 1)a} (mod p)
▶ Means

∏
i i =

∏
i(ai mod p)

▶ Factor out a:
∏

i i ≡ ap−1 ∏
i i (mod p)

▶ i−1 exists for all i ∈ {1, 2, ..., p − 1}
▶ Multiply by (

∏
i i)

−1 ≡
∏

i(i−1) (mod p)
What happens if p not prime?
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Euler Attempt 1
Claim: If a ̸≡ 0 (mod m), am−1 ≡ 1 (mod m).

“Proof”:
▶ Is ax (mod m) a biject. on {1, ...,m − 1}?
▶ Not necessarily!
▶ 2x (mod 4) maps {1, 2, 3} to {2, 0, 2}!

Generally have issues if gcd(a,m) ̸= 1
Not recoverable: if am−1 ≡ 1 (mod m), am−2 is a−1!
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Euler Attempt 2
Claim: If gcd(a,m) = 1, am−1 ≡ 1 (mod m).

Proof:
▶ f(x) = ax (mod m) is biject. on {1, ...,m − 1}
▶ So {1, ...,m − 1} = {a, ..., (m − 1)a} (mod m)

▶ Means
∏

i i =
∏

i(ai mod m)

▶ Factor out a:
∏

i i ≡ am−1 ∏
i i (mod m)

▶ Issue: not all is have inverses
▶ So (

∏
i i)

−1 DNE!
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Euler Attempt 3
Theorem: Let ϕ(m) be |{x ∈ Zm| gcd(x,m) = 1}|.1
Then for a coprime to m, aϕ(m) ≡ 1 (mod m).

Proof:
▶ Let S = {x ∈ Zm| gcd(x,m) = 1}
▶ f(x) = ax (mod m) is bijection on S
▶ So S = {ax mod m|x ∈ S}
▶ Hence

∏
i∈S i =

∏
i∈S(ai mod m)

▶ Factor out a:
∏

i∈S i ≡ a|S|
∏

i∈S i (mod m)

▶
(∏

i∈S i
)−1 ≡

∏
i∈S(i−1) (mod m), so exists!

▶ Multiply to get aϕ(m) ≡ 1 (mod m)

1ϕ(·) is known as Euler’s Totient Function.
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Understanding ϕ
Claim: Suppose m can be factored as pn1

1 · ... · pnk
k .

Then ϕ(m) = (p1 − 1)pn1−1
1 · ... · (pk − 1)pnk−1

k .

Examples:
▶ m = 12 = 22 · 3

▶ ϕ(12) = (2 − 1)21 · (3 − 1)30 = 4
▶ 1, 5, 7, 11

▶ m = 11
▶ ϕ(11) = (11 − 1)110 = 10
▶ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

▶ m = 90 = 2 · 32 · 5
▶ ϕ(90) = (2−1)20 ·(3−1)31 ·(5−1)50 = 24
▶ 1,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 49, 53, 59, 61, 67, 71, 73, 77,79,83,89
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ϕ Is Multiplicative
Lemma: If gcd(m, n) = 1, ϕ(mn) = ϕ(m)ϕ(n).

Proof:
▶ Consider b : Zmn → Zm × Zn such that

b(x) = (x mod m, x mod n)
▶ CRT gives b−1 : Zm × Zn → Zmn
▶ Claim: x invertible iff b(x) is

▶ xx−1 ≡ 1 (mod m), xx−1 ≡ 1 (mod n)
▶ If ax ≡ 1 (mod m) and ax ≡ 1 (mod n),

ax ≡ 1 (mod mn)
▶ ϕ(m) inv. choices for b(x)1, ϕ(n) for b(x)2
▶ Thus, ϕ(m)ϕ(n) inv. choices for b(x)
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ϕ For Prime Powers
Lemma: For prime p, ϕ(pk) = (p − 1)pk−1.

Proof:
▶ x not coprime to pk iff p|x
▶ Not coprime: p, 2p, 3p, ..., pk = pk−1p
▶ Total of pk−1 nums not coprime
▶ So num coprime = pk − pk−1 = (p − 1)pk−1
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Proving ϕ
Theorem: Suppose m factored as pn1

1 · ... · pnk
k .

Then ϕ(m) = (p1 − 1)pn1−1
1 · ... · (pk − 1)pnk−1

k .

Proof:
▶ Since ϕ is multiplicative:

ϕ(m) = ϕ(pn1
1 · ... · pnk−2

k−2 · pnk−1
k−1 · pnk

k )

= ϕ(pn1
1 · ... · pnk−2

k−2 · pnk−1
k−1 )ϕ(p

nk
k )

= ϕ(pn1
1 · ... · pnk−2

k−2 )ϕ(p
nk−1
k−1 )ϕ(p

nk
k )

...
= ϕ(pn1

1 )ϕ(pn2
2 )...ϕ(pnk

k )

▶ Apply previous lemma to each prime power!
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Fin
Have a great weekend!
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