Bonus Lecture 3: Cantor-Schröder-Bernstein Theorem Or Is It Cantor-Schröder-Berenstain?

Recall

Recall from lecture:

Cantor-Schröder-Bernstein Theorem:

If \exists one-to-one functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then \exists bijection $b: A \rightarrow B$

How can we prove this?

Need to somehow combine parts of g and f

A First Attempt

Have $f: A \rightarrow B$, $g: B \rightarrow A$

Let $R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$

g onto R_g , already known injective Means g is bijection from $B \to R_g!$

Means g^{-1} is bijection from $R_g \to B$ Wanted bijection $A \to B$ — is close!

1/11

/11

Quick Fix

Have map $R_g o B$, want map A o B

Where do we map $A - R_g$?

Only have f and g available, g not helpful... So use f!

First attempt: take $b(x) = \begin{cases} f(x) & x \notin R_g \\ g^{-1}(x) & x \in R_g \end{cases}$

Issue: not injective any more!

Injectivity Issues

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can't be mapped by g^{-1}

Attempt 2: $b(x) = \begin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & \text{ow} \end{cases}$

Injective yet? Nope!

I Have n Problems

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$!

Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Use f(x) for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow Now collisions with A_2 and $A_3 = \{g(f(x)) | x \in A_2\}$

Idea: repeat trick ad infinitum

/11

6/11

4/11

Final Bijection

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: *b* is onto *B*

- ▶ Let $y \in B$
- ▶ Case 1: $g(y) \in A_n$ for some n
 - ▶ $n \neq 0$ since $g(y) \in R_g$
 - So $\exists x \in A_{n-1}$ st b(x) = f(x) = y
- ► Case 2: $g(y) \notin A_n$ for any n
 - Then $b(g(y)) = g^{-1}(g(y)) = y$

Final Bijection 2

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: *b* is one-to-one

- ▶ Suppose have $x \neq x'$ st b(x) = b(x')
- f injective, so can't have f(x) = f(x')
- ▶ Ditto with g^{-1}
- So have x in first case, x' in second
- ▶ But $f(x) = g^{-1}(x')$ means g(f(x)) = x'
- ▶ So x' also in case 1 contradiction!

Proof By Picture

Photo Credit: Elements of Set Theory by Herbert Enderton

Note: C_i in diagram is our A_i

8 / 11

Example Application

Example of CSB in action:

Take
$$A = B = \mathbb{N}$$
, $f(x) = g(x) = 2x$

$$R_g = \{2n|n \in \mathbb{N}\}$$
, so $A_0 = \{n|n \text{ is odd}\}$

 $A_1 = \{4n | n \text{ is odd}\}$

 $A_2 = \{16n | n \text{ is odd}\}$

 $A_i = \{2^{2i}n|n \text{ is odd}\}$

So
$$b(x) = \begin{cases} 2x & x = 2^{2k}o \text{ st } o \text{ odd} \\ \frac{x}{2} & x = 2^{2k+1}o \text{ st } o \text{ odd} \\ 0 & x = 0 \end{cases}$$

Fin

Have a great weekend!