Bonus Lecture 3: Cantor-Schröder-Bernstein Theorem

Or Is It Cantor-Schröder-Berenstain?
Recall from lecture:

Cantor-Schröder-Bernstein Theorem:
If \(\exists \) one-to-one functions \(f : A \rightarrow B \) and \(g : B \rightarrow A \), then \(\exists \) bijection \(b : A \rightarrow B \).
Recall from lecture:

Cantor-Schröder-Bernstein Theorem:
If \exists one-to-one functions $f : A \to B$ and $g : B \to A$, then \exists bijection $b : A \to B$

How can we prove this?
Recall from lecture:

Cantor-Schröder-Bernstein Theorem:

If \(\exists \) one-to-one functions \(f : A \rightarrow B \) and \(g : B \rightarrow A \), then \(\exists \) bijection \(b : A \rightarrow B \)

How can we prove this?
Need to somehow combine parts of \(g \) and \(f \)
A First Attempt

Have $f : A \rightarrow B$, $g : B \rightarrow A$

Let $R_g = \{ x \in A | (\exists y \in B)(g(y) = x) \}$
A First Attempt

Have \(f : A \rightarrow B, g : B \rightarrow A \)

Let \(R_g = \{ x \in A | (\exists y \in B)(g(y) = x) \} \)

g onto \(R_g \), already known injective
Means \(g \) is bijection from \(B \rightarrow R_g \)!
A First Attempt

Have $f : A \to B$, $g : B \to A$

Let $R_g = \{ x \in A | (\exists y \in B) (g(y) = x) \}$

g onto R_g, already known injective
Means g is bijection from $B \to R_g$!

Means g^{-1} is bijection from $R_g \to B$
A First Attempt

Have $f : A \rightarrow B$, $g : B \rightarrow A$

Let $R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$

g onto R_g, already known injective
Means g is bijection from $B \rightarrow R_g$!

Means g^{-1} is bijection from $R_g \rightarrow B$
Wanted bijection $A \rightarrow B$ — is close!
Quick Fix

Have map $R_g \to B$, want map $A \to B$

Where do we map $A - R_g$?
Quick Fix

Have map $R_g \rightarrow B$, want map $A \rightarrow B$

Where do we map $A - R_g$?

Only have f and g available, g not helpful...
Quick Fix

Have map $R_g \rightarrow B$, want map $A \rightarrow B$

Where do we map $A \setminus R_g$?

Only have f and g available, g not helpful...
So use f!
Quick Fix

Have map $R_g \to B$, want map $A \to B$

Where do we map $A - R_g$?

Only have f and g available, g not helpful...
So use f!

First attempt: take $b(x) = \begin{cases} f(x) & x \notin R_g \\ g^{-1}(x) & x \in R_g \end{cases}$
Quick Fix

Have map $R_g \to B$, want map $A \to B$

Where do we map $A - R_g$?

Only have f and g available, g not helpful...
So use f!

First attempt: take $b(x) = \begin{cases} f(x) & x \not\in R_g \\ g^{-1}(x) & x \in R_g \end{cases}$

Issue: not injective any more!
Injectivity Issues

Problem: f maps $A \rightarrow R_g$ to places hit by g^{-1}
Injectivity Issues

Problem: f maps $A \rightarrow R_g$ to places hit by g^{-1}

$A \rightarrow R_g$ has no where else to be mapped
So displace $x \in R_g$ that conflict!
Injectivity Issues

Problem: f maps $A - R_g$ to places hit by g^{-1}

$A - R_g$ has no where else to be mapped
So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{ g(f(x)) | x \in A_0 \}$

Elts in A_1 can’t be mapped by g^{-1}
Injectivity Issues

Problem: f maps $A - R_g$ to places hit by g^{-1}

$A - R_g$ has no where else to be mapped
So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can’t be mapped by g^{-1}

Attempt 2: $b(x) = \begin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & \text{ow} \end{cases}$
Injectivity Issues

Problem: \(f \) maps \(A - R_g \) to places hit by \(g^{-1} \)

\(A - R_g \) has no where else to be mapped
So displace \(x \in R_g \) that conflict!

Formally: let \(A_0 = A - R_g \), \(A_1 = \{ g(f(x)) | x \in A_0 \} \)

Elts in \(A_1 \) can’t be mapped by \(g^{-1} \)

Attempt 2: \(b(x) = \begin{cases}
 f(x) & x \in (A_0 \cup A_1) \\
 g^{-1}(x) & ow
\end{cases} \)

Injective yet?
Injectivity Issues

Problem: \(f \) maps \(A - R_g \) to places hit by \(g^{-1} \)

\(A - R_g \) has no where else to be mapped
So displace \(x \in R_g \) that conflict!

Formally: let \(A_0 = A - R_g, A_1 = \{ g(f(x)) | x \in A_0 \} \)
Elts in \(A_1 \) can’t be mapped by \(g^{-1} \)

Attempt 2: \(b(x) = \begin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & \text{otherwise} \end{cases} \)

Injective yet? Noooope!
I Have n Problems

Fixed collisions w/$f(A_0)$, but now collide w/$f(A_1)$!

Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$
I Have n Problems

Fixed collisions w/$f(A_0)$, but now collide w/$f(A_1)$!

Collisions with $A_2 := \{g(f(x))|x \in A_1\}$

Can’t displace A_1 — would collide with A_0 again
So have to displace A_2
I Have n Problems

Fixed collisions w/ $f(A_0)$, but now collide w/ $f(A_1)$!

Collisions with $A_2 := \{ g(f(x)) | x \in A_1 \}$

Can’t displace A_1 — would collide with A_0 again
So have to displace A_2

Use $f(x)$ for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow
I Have n Problems

Fixed collisions w/ \(f(A_0) \), but now collide w/ \(f(A_1) \)!

Collisions with \(A_2 := \{ g(f(x)) | x \in A_1 \} \)

Can’t displace \(A_1 \) — would collide with \(A_0 \) again
So have to displace \(A_2 \)

Use \(f(x) \) for \(x \in A_0 \cup A_1 \cup A_2 \), \(g^{-1}(x) \) ow
Now collisions with \(A_2 \) and \(A_3 = \{ g(f(x)) | x \in A_2 \} \)
I Have n Problems

Fixed collisions w/$f(A_0)$, but now collide w/$f(A_1)$!

Collisions with $A_2 := \{g(f(x))|x \in A_1\}$

Can’t displace A_1 — would collide with A_0 again

So have to displace A_2

Use $f(x)$ for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow

Now collisions with A_2 and $A_3 = \{g(f(x))|x \in A_2\}$

...
I Have n Problems

Fixed collisions w/$f(A_0)$, but now collide w/$f(A_1)$!

Collisions with $A_2 := \{g(f(x))|x \in A_1\}$

Can’t displace A_1 — would collide with A_0 again
So have to displace A_2

Use $f(x)$ for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow
Now collisions with A_2 and $A_3 = \{g(f(x))|x \in A_2\}$

...

Idea: repeat trick $ad infinitum$
Final Bijection

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$
Final Bijection

Let $A_0 = A - R_g$
For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B
Final Bijection

Let $A_0 = A - R_g$
For $i \geq 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$

Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

- Let $y \in B$
 - Case 1: $g(y) \in A_n$ for some n
Final Bijection

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) \mid x \in A_{i-1} \}$

Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

- Let $y \in B$

- Case 1: $g(y) \in A_n$ for some n
 - $n \neq 0$ since $g(y) \in R_g$
 - So $\exists x \in A_{n-1}$ s.t. $b(x) = f(x) = y$
Final Bijection

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$

Then $b(x) = \begin{cases}
 f(x) & x \in A_n \text{ for some } n \\
 g^{-1}(x) & \text{ow}
\end{cases}$

Claim: b is onto B

- Let $y \in B$
- Case 1: $g(y) \in A_n$ for some n
 - $n \neq 0$ since $g(y) \in R_g$
 - So $\exists x \in A_{n-1}$ s.t. $b(x) = f(x) = y$
- Case 2: $g(y) \notin A_n$ for any n
Final Bijection

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$

Then $b(x) = \begin{cases}
 f(x) & x \in A_n \text{ for some } n \\
 g^{-1}(x) & \text{ow}
\end{cases}$

Claim: b is onto B

- Let $y \in B$
 - Case 1: $g(y) \in A_n$ for some n
 - $n \neq 0$ since $g(y) \in R_g$
 - So $\exists x \in A_{n-1}$ st $b(x) = f(x) = y$
 - Case 2: $g(y) \notin A_n$ for any n
 - Then $b(g(y)) = g^{-1}(g(y)) = y$
Final Bijection 2

Let $A_0 = A - R_g$
For $i \geq 1$, let $A_i = \{g(f(x))| x \in A_{i-1}\}$

Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is one-to-one
Final Bijection 2

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is one-to-one

- Suppose have $x \neq x'$ st $b(x) = b(x')$
Final Bijection 2

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $h(x) = \begin{cases}
 f(x) & x \in A_n \text{ for some } n \\
 g^{-1}(x) & \text{ow}
\end{cases}$

Claim: b is one-to-one

- Suppose have $x \neq x'$ st $b(x) = b(x')$
- f injective, so can’t have $f(x) = f(x')$
- Ditto with g^{-1}
Final Bijection 2

Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is one-to-one

- Suppose have $x \neq x'$ st $b(x) = b(x')$
- f injective, so can’t have $f(x) = f(x')$
- Ditto with g^{-1}
- So have x in first case, x' in second
Let $A_0 = A - R_g$

For $i \geq 1$, let $A_i = \{ g(f(x)) | x \in A_{i-1} \}$

Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is one-to-one

- Suppose have $x \neq x'$ st $b(x) = b(x')$
- f injective, so can’t have $f(x) = f(x')$
- Ditto with g^{-1}
- So have x in first case, x' in second
- But $f(x) = g^{-1}(x')$ means $g(f(x)) = x'$
- So x' also in case 1 — contradiction!
Proof By Picture

Note: C_i in diagram is our A_i
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
$A_1 = \{4n|n \text{ is odd}\}$
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
$A_1 = \{4n|n \text{ is odd}\}$
$A_2 = \{16n|n \text{ is odd}\}$
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
$A_1 = \{4n|n \text{ is odd}\}$
$A_2 = \{16n|n \text{ is odd}\}$
...

R_g
Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
$A_1 = \{4n|n \text{ is odd}\}$
$A_2 = \{16n|n \text{ is odd}\}$

\[\vdots\]
$A_i = \{2^{2i}n|n \text{ is odd}\}$
Example Application

Example of CSB in action:
Take $A = B = \mathbb{N}$, $f(x) = g(x) = 2x$

$R_g = \{2n|n \in \mathbb{N}\}$, so $A_0 = \{n|n \text{ is odd}\}$
$A_1 = \{4n|n \text{ is odd}\}$
$A_2 = \{16n|n \text{ is odd}\}$

\ldots

$A_i = \{2^i n|n \text{ is odd}\}$

So $b(x) = \begin{cases}
2x & x = 2^{2k}\text{ o st } o \text{ odd} \\
\frac{x}{2} & x = 2^{2k+1}\text{ o st } o \text{ odd} \\
0 & x = 0
\end{cases}$
Fin

Have a great weekend!