Bonus Lecture 3: Cantor-Schröder-Bernstein Theorem Or Is It Cantor-Schröder-Berenstain?

Recall

Recall from lecture: **Cantor-Schröder-Bernstein Theorem**: If \exists one-to-one functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then \exists bijection $b: A \rightarrow B$

Recall

Recall from lecture: **Cantor-Schröder-Bernstein Theorem**: If \exists one-to-one functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then \exists bijection $b: A \rightarrow B$

How can we prove this?

Recall

Recall from lecture: **Cantor-Schröder-Bernstein Theorem**: If \exists one-to-one functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then \exists bijection $b: A \rightarrow B$

How can we prove this?

Need to somehow combine parts of g and f

Have $f: A \rightarrow B$, $g: B \rightarrow A$

Let
$$R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$$

Have $f: A \rightarrow B$, $g: B \rightarrow A$

Let
$$R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$$

g onto R_g , already known injective Means g is bijection from $B \rightarrow R_g!$

Have $f: A \rightarrow B$, $g: B \rightarrow A$

Let
$$R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$$

g onto R_g , already known injective Means g is bijection from $B \rightarrow R_g!$

Means g^{-1} is bijection from $R_g \rightarrow B$

Have $f: A \rightarrow B$, $g: B \rightarrow A$

Let
$$R_g = \{x \in A | (\exists y \in B)(g(y) = x)\}$$

g onto R_g , already known injective Means g is bijection from $B \rightarrow R_g!$

Means g^{-1} is bijection from $R_g \rightarrow B$ Wanted bijection $A \rightarrow B$ — is close!

Have map $R_g \rightarrow B$, want map $A \rightarrow B$ Where do we map $A - R_g$?

Have map $R_g
ightarrow B$, want map A
ightarrow B

Where do we map $A - R_g$?

Only have f and g available, g not helpful...

Have map $R_g \rightarrow B$, want map $A \rightarrow B$

Where do we map $A - R_g$?

Only have f and g available, g not helpful... So use f!

Have map $R_g
ightarrow B$, want map A
ightarrow B

Where do we map $A - R_g$?

Only have f and g available, g not helpful... So use f!

$$\mathsf{First} ext{ attempt: take } b(x) = egin{cases} f(x) & x
ot\in R_g \ g^{-1}(x) & x \in R_g \end{cases}$$

Have map $R_g
ightarrow B$, want map A
ightarrow B

Where do we map $A - R_g$?

Only have f and g available, g not helpful... So use f!

$$\mathsf{First} ext{ attempt: take } b(x) = egin{cases} f(x) & x
ot\in R_g \ g^{-1}(x) & x \in R_g \end{cases}$$

Issue: not injective any more!

Problem: f maps $A - R_g$ to places hit by g^{-1}

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can't be mapped by g^{-1}

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can't be mapped by g^{-1}

Attempt 2:
$$b(x) = egin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & ext{ow} \end{cases}$$

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can't be mapped by g^{-1}

Attempt 2:
$$b(x) = \begin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & \text{ow} \end{cases}$$

Injective yet?

Problem: f maps $A - R_g$ to places hit by g^{-1}

 $A - R_g$ has no where else to be mapped So displace $x \in R_g$ that conflict!

Formally: let $A_0 = A - R_g$, $A_1 = \{g(f(x)) | x \in A_0\}$

Elts in A_1 can't be mapped by g^{-1}

Attempt 2:
$$b(x) = \begin{cases} f(x) & x \in (A_0 \cup A_1) \\ g^{-1}(x) & \text{ow} \end{cases}$$

Injective yet? Nope!

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$! Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)!$

Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$! Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Use f(x) for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$! Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Use f(x) for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow Now collisions with A_2 and $A_3 = \{g(f(x)) | x \in A_2\}$

. . .

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$! Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Use f(x) for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow Now collisions with A_2 and $A_3 = \{g(f(x)) | x \in A_2\}$

. . .

Fixed collisions $w/f(A_0)$, but now collide $w/f(A_1)$! Collisions with $A_2 := \{g(f(x)) | x \in A_1\}$

Can't displace A_1 — would collide with A_0 again So have to displace A_2

Use f(x) for $x \in A_0 \cup A_1 \cup A_2$, $g^{-1}(x)$ ow Now collisions with A_2 and $A_3 = \{g(f(x)) | x \in A_2\}$

Idea: repeat trick ad infinitum

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

- Let $y \in B$
- Case 1: $g(y) \in A_n$ for some n

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

- Let $y \in B$
- Case 1: g(y) ∈ A_n for some n
 n ≠ 0 since g(y) ∈ R_g
 So ∃x ∈ A_{n-1} st b(x) = f(x) = y

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

• Let $y \in B$

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $b(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: b is onto B

• Let $y \in B$

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

Claim: *b* is one-to-one

• Suppose have $x \neq x'$ st b(x) = b(x')

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

- Suppose have $x \neq x'$ st b(x) = b(x')
- f injective, so can't have f(x) = f(x')
- Ditto with g⁻¹

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

- Suppose have $x \neq x'$ st b(x) = b(x')
- f injective, so can't have f(x) = f(x')
- Ditto with g⁻¹
- So have x in first case, x' in second

Let
$$A_0 = A - R_g$$

For $i \ge 1$, let $A_i = \{g(f(x)) | x \in A_{i-1}\}$
Then $h(x) = \begin{cases} f(x) & x \in A_n \text{ for some } n \\ g^{-1}(x) & \text{ow} \end{cases}$

- Suppose have $x \neq x'$ st b(x) = b(x')
- f injective, so can't have f(x) = f(x')
- Ditto with g⁻¹
- So have x in first case, x' in second
- But $f(x) = g^{-1}(x')$ means g(f(x)) = x'
- So x' also in case 1 contradiction!

Proof By Picture

Photo Credit: Elements of Set Theory by Herbert Enderton

Note: C_i in diagram is our A_i

Example of CSB in action: Take $A = B = \mathbb{N}$, f(x) = g(x) = 2x

 $R_g = \{2n | n \in \mathbb{N}\}$, so $A_0 = \{n | n \text{ is odd}\}$

$$egin{aligned} &R_g = \{2n | n \in \mathbb{N}\}, ext{ so } A_0 = \{n | n ext{ is odd}\}\ &A_1 = \{4n | n ext{ is odd}\} \end{aligned}$$

$$R_g = \{2n | n \in \mathbb{N}\}, \text{ so } A_0 = \{n | n \text{ is odd}\}$$
$$A_1 = \{4n | n \text{ is odd}\}$$
$$A_2 = \{16n | n \text{ is odd}\}$$

. . .

$$egin{aligned} R_{g} &= \{2n|n \in \mathbb{N}\}, ext{ so } A_{0} &= \{n|n ext{ is odd}\} \ A_{1} &= \{4n|n ext{ is odd}\} \ A_{2} &= \{16n|n ext{ is odd}\} \end{aligned}$$

$$R_g = \{2n|n \in \mathbb{N}\}$$
, so $A_0 = \{n|n \text{ is odd}\}$
 $A_1 = \{4n|n \text{ is odd}\}$
 $A_2 = \{16n|n \text{ is odd}\}$

$$A_i = \{2^{2i}n | n \text{ is odd}\}$$

$$egin{aligned} R_g &= \{2n|n \in \mathbb{N}\}, ext{ so } A_0 &= \{n|n ext{ is odd}\}\ A_1 &= \{4n|n ext{ is odd}\}\ A_2 &= \{16n|n ext{ is odd}\} \end{aligned}$$

$$A_{i} = \{2^{2i}n | n \text{ is odd}\}$$

So $b(x) = \begin{cases} 2x & x = 2^{2k}o \text{ st } o \text{ odd} \\ \frac{x}{2} & x = 2^{2k+1}o \text{ st } o \text{ odd} \\ 0 & x = 0 \end{cases}$

Fin

Have a great weekend!