
Mixing Time

CS 70, Summer 2019

Bonus Lecture, 8/9/19
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Disclaimer:

Much handwaving today!!

Goal is to get a high level intuition / picture for
the concept of mixing time and applications

Emphasis is on heuristics rather than rigor
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What We Know...
Every irreducible, aperiodic Markov chain has a
unique stationary distribution.
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Q: How long does it take to get close to the
stationary distribution?
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Total Variation Distance
Just one of many ways to measure how close two
distributions are.

Let P1, P2 be two PMFs. Their TV distance is:
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Mixing Time: Definition
I have an irreducible, aperiodic Markov chain.
Notation: µ(n) is the distribution at time n, and ⇡
is its (unique) stationary distribution.

I want to keep running my chain until:

The mixing time tmix(") is the first time this
happens.

(Omitted fact: The TV distance between µ(n)

and ⇡ decreases as n increases.)
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Complete Graph With Loops
Mixing time analysis sometimes direct!

Take a random walk on a complete graph with
loops. What is the stationary distribution?

What does the transition matrix look like?

Mixing Time? Dependence on "?
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Random-To-Top Shu✏ing I
S: All orderings of n cards in a deck.
Transitions: Choose card randomly in the deck.
Move it to the top.

Di↵erent strategy called coupling:
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Random-To-Top Shu✏ing II
At each time, each card is labeled coupled or not.

Initially, all cards start uncoupled.
Pick a random card C .

In both decks, take card C and move it to the top.
If C isn’t already coupled, mark it as coupled.

What happens when we look at each deck
individually?
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LOOKS like random - to - top move !

④ once a # IS labeled "

coupled ; it has
the same position in both decks !

Random-To-Top Shu✏ing III
Time until all cards get coupled = time until Deck
1 is fully random.

For all ✏: tmix(") =
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Random Hypercube Walk I
Take an n-dimensional hypercube.
Stationary distribution of hypercube walk:

Try coupling again:
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Random Hypercube Walk II
Each coordinate is labeled coupled or not.

Initially all coordinates are uncoupled.
Pick a random coordinate i .
Flip a coin to set the i-th coordinate to 0 or 1.
If i-th coordinate is uncoupled, set it to coupled.
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Random Hypercube Walk III
Use Coupon Collector again!

For all ", tmix(") =
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same as before
.



Conditions for Fast Mixing?
Complete graph Kn?

Path on n vertices?

Dumbbell?
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Bottlenecks
We use a measurement called the conductance
to quantify the notion of a bottleneck.

The conductance of a set A ✓ S is:

�(A) =

The conductance of the chain M is:

�(M) =
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How To Measure Conductance?
Measuring conductance = looking at all subsets
of states with vol(A)  2.
How many subsets, potentially?

Alternative: Get lower bound on �(M) using
second largest eigenvalue of transition matrix.

�(M) �

Eigenvalues are much faster to compute!
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Markov Chain Monte Carlo
Monte Carlo: randomized algorithm where the
output is allowed to be incorrect

Use cases:

I sampling from complicated distributions

I counting combinatorial objects

I Bayesian inference

I statistical physics

I volume estimation, integration
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Markov Chain Monte Carlo

Key idea: Design a Markov chain so that its
stationary follows the distribution that you want
to sample from. Run the chain, wait for it to mix.

Runtime depends on...
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