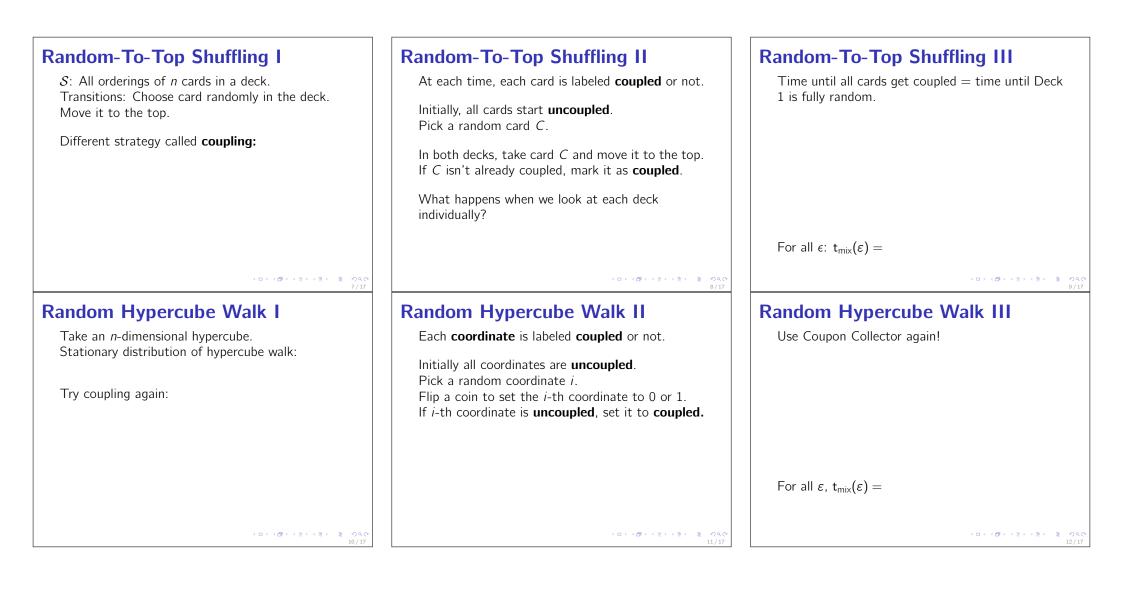
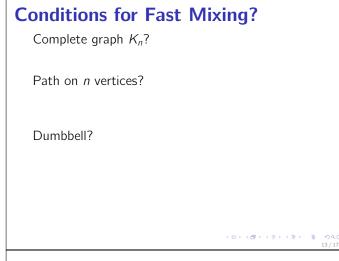
Disclaimer: What We Know... Every irreducible, aperiodic Markov chain has a **unique** stationary distribution. **Mixing Time** Much handwaving today!! Goal is to get a high level intuition / picture for $\pi_m = \pi_0 P^m = \pi_0 \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}^m \cdot \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.4 & 0 \\ 0.3 & 0.7$ CS 70. Summer 2019 the concept of mixing time and applications Emphasis is on **heuristics** rather than rigor Bonus Lecture, 8/9/19 **Q: How long** does it take to get **close** to the stationary distribution? **Total Variation Distance Mixing Time: Definition Complete Graph With Loops** Just one of many ways to measure how **close** two I have an **irreducible**, aperiodic Markov chain. Mixing time analysis sometimes direct! Notation: $\mu^{(n)}$ is the distribution **at time** *n*, and π distributions are. is its (unique) stationary distribution. Take a random walk on a complete graph with Let P_1 , P_2 be two PMFs. Their TV distance is: **loops**. What is the stationary distribution? I want to keep running my chain until: What does the transition matrix look like? The mixing time $t_{mix}(\varepsilon)$ is the first time this happens. Mixing Time? Dependence on ε ? (Omitted fact: The TV distance between $\mu^{(n)}$ and π decreases as *n* increases.) - + 中 + 一部 + 4 目 + 4 目 + 1 目 - わら(





Markov Chain Monte Carlo

Monte Carlo: randomized algorithm where the output is allowed to be incorrect

Use cases:

- sampling from complicated distributions
- counting combinatorial objects
- ► Bayesian inference
- statistical physics
- volume estimation, integration

Bottlenecks

We use a measurement called the **conductance** to quantify the notion of a bottleneck.

The conductance of a set $A \subseteq S$ is:

 $\Phi(A) =$

The conductance of the chain M is:

 $\Phi(M) =$

Markov Chain Monte Carlo

Key idea: Design a Markov chain so that its stationary follows the distribution that you want to sample from. Run the chain, wait for it to mix.

Runtime depends on...

How To Measure Conductance?

Measuring conductance = looking at all subsets of states with $vol(A) \le \frac{1}{2}$. How many subsets, potentially?

Alternative: Get **lower bound** on $\Phi(M)$ using **second largest eigenvalue** of transition matrix.

 $\Phi(M) \geq$

Eigenvalues are much faster to compute!