Mixing Time

CS 70, Summer 2019

Bonus Lecture, 8/9/19

Disclaimer:

Much handwaving today!!

Goal is to get a high level intuition / picture for the concept of mixing time and applications

Emphasis is on **heuristics** rather than rigor

What We Know...

Every irreducible, aperiodic Markov chain has a **unique** stationary distribution.

$$\pi_{m} = \pi_{0}P^{m} = \pi_{0} \begin{bmatrix}
0.8 & 0.2 & 0 \\
0 & 0.3 & 0.7 \\
0.6 & 0.4 & 0
\end{bmatrix}^{m}$$

$$\pi_{m}(1)$$

$$\pi_{m}(2)$$

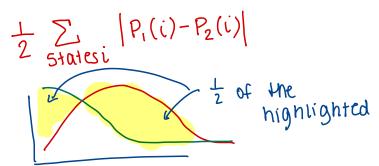
$$\pi_{m}(3)$$

$$\pi_{m}(3)$$

Q: How long does it take to get close to the stationary distribution?

Total Variation Distance

Just one of many ways to measure how **close** two distributions are. Let P_1 , P_2 be two PMFs. Their TV distance is:



Mixing Time: Definition

I have an **irreducible, aperiodic** Markov chain. Notation: $\mu^{(n)}$ is the distribution at time n, and π is its (unique) stationary distribution.

I want to keep running my chain until:

$$d_{TV}(y^{(n)}, T) \leq \varepsilon \leftarrow small positive number$$

The mixing time $t_{mix}(\varepsilon)$ is the first time this happens. \searrow worst case starting dist.

(Omitted fact: The TV distance between $\mu^{(n)}$ and π decreases as n increases.) with high prob, of least

Complete Graph With Loops

Mixing time analysis sometimes direct!

Take a random walk on a complete graph with **loops**. What is the stationary distribution?

Kn:
$$\pi = [\frac{1}{n} \frac{1}{n} \dots \frac{1}{n}]$$
 Symmetry between

What does the transition matrix look like?

wing Time? Dependence on
$$\varepsilon$$
?

Mixing Time? Dependence on ε ?

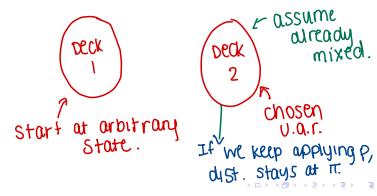
Random-To-Top Shuffling I

S: All orderings of n cards in a deck. Transitions: Choose card randomly in the deck.

Move it to the top.

TI here is uniform over our states.

Different strategy called coupling:



Random-To-Top Shuffling II

At each time, each card is labeled **coupled** or not. number

Pick a random card C.

In both decks, take card *C* and move it to the top. If *C* isn't already coupled, mark it as **coupled**.

What happens when we look at each deck individually? Looks wike random-to-top move!

The same position in both decks!

Random-To-Top Shuffling III

Time until all cards get coupled = time until Deck 1 is fully random.

time

$$T_1$$
 touple T_2 and T_3 and couple T_3 couple. Toupon to elector.

 T_1 toupon to elector.

 T_2 toupon to elector.

 T_3 coupon to elector.

 T_4 toupon to elector.

 T_4 toupon to elector.

 T_5 toupon to elector.

 T_6 toupon to elector.

 T_7 toupon to elector.

Random Hypercube Walk I

Take an *n*-dimensional hypercube. vertices n-length bitstrings Stationary distribution of hypercube walk:

$$\Pi = \begin{bmatrix} \frac{1}{2^n} & \frac{1}{2^n} \\ \frac{1}{2^n} & \frac{1}{2^n} \end{bmatrix}$$
 all vertices same deg.

Try coupling again:

vertex self loop wpt transitions to nor wptn A LOZY WOLK: Every

Random Hypercube Walk II

Each **coordinate** is labeled **coupled** or not.

Initially all coordinates are uncoupled.

Pick a random coordinate i.

Flip a coin to set the i-th coordinate to 0 or 1.

If *i*-th coordinate is **uncoupled**, set it to **coupled**.

Random Hypercube Walk III

Use Coupon Collector again!

same as before.

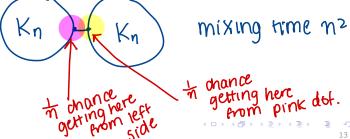
For all
$$\varepsilon$$
, $t_{mix}(\varepsilon) =$

Conditions for Fast Mixing?

Complete graph K_n ? ≈ 1

Path on *n* vertices? Stort in middle.

Dumbbell?



Bottlenecks

We use a measurement called the **conductance** to quantify the notion of a bottleneck.

The conductance of a set $A \subseteq \mathcal{S}$ is:

$$\Phi(A) = \frac{\sum_{i \in A, j \in \overline{A}} \pi(i) P_{ij}}{\sum_{i \in A} \pi(i)}$$

The conductance of the chain M is:

$$\Phi(M) = \min_{\substack{A \text{ S.t} \\ \text{VOI}(A) < \frac{1}{2}}} \overline{\Phi}(A)$$

How To Measure Conductance?

Measuring conductance = looking at all subsets of states with $vol(A) \le 2$. How many subsets, potentially?

Alternative: Get **lower bound** on $\Phi(M)$ using **second largest eigenvalue** of transition matrix.

$$\Phi(M) \geq \frac{1-\lambda_2}{2}$$

Eigenvalues are much faster to compute!

Markov Chain Monte Carlo

Monte Carlo: randomized algorithm where the output is allowed to be incorrect

Use cases:

- sampling from complicated distributions
- counting combinatorial objects
- Bayesian inference
- statistical physics
- volume estimation, integration

Markov Chain Monte Carlo

Key idea: Design a Markov chain so that its stationary follows the distribution that you want to sample from. Run the chain, wait for it to mix.

Runtime depends on... $t_{mix}(\xi)$!